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A new class of scalar and vector-state estimators and stochastic controllers for linear dynamic 

systems with additive Cauchy process and measurement noises has been developed. The Kalman 

filter and the linear-quadratic-Gaussian controller have been the main estimation and control 

paradigms in modern engineering. However, many practical system noises, such as radar glint, are 

better described by heavy tailed probability density functions (pdf). Although the Cauchy pdf has 

an infinite variance, the conditional density of a Cauchy random variable, given a linear measure- 

ment with an additive Cauchy noise, has a conditional mean and a finite conditional variance, both 

being functions of the measurement. Over the last three years, a theory of estimation and stochas- 

tic control has been developed for the vector state linear dynamic system. The methodology for 

scalar state systems entailed propagation of the conditional pdf, while the vector state case was 

addressed by developing a recursion for the analytic propagation of the character function of the 

unnormalized conditional pdf (ucpdf). Through a spectral transformation, the character function 

of the ucpdf is used explicitly in the development of stochastic controllers for vector-state systems. 
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1 Introduction 
 
In many engineering, economic, telecommunications, and science applications the underlying ran- 

dom processes or noises have significant volatility, which are not captured by Gaussian distributions 

[1]. Rather than light-tailed Gaussian distributions, heavy-tailed distributions have been shown 

to better represent these volatile random fluctuations. Examples from the practical engineering 

world include radar and sonar sensor noises [2], air turbulent environment noise [3], and adversarial 

motion. Our objective is to develop estimation and stochastic control techniques for linear dy- 

namic systems with heavy-tail distributed noises, which are in the class of symmetric alpha-stable 

(Sα-S) distributions [4]. In their simplified form, Sα-S distributions of scalar random variables 

are characterized by their characteristic function expressed as φ(ν) = e−σα|ν|α 
, where σ and α 

are positive parameters and ν is the spectral variable. In this class, α = 0.5, 1, 2 yield the Lévy, 

Cauchy and Gaussian distributions, respectively. For α ∈ (0, 2), all the densities have infinite 

variance. 

 
In detection of a radar signal in clutter, the in-phase component of radar clutter time series 

agrees extremely well with a Sα-S probability density function (pdf) with α = 1.7 [5].   For 

α  ∈ [1, 2] a maximum likelihood Cauchy detector,  which is in the class of myriad filters [6], 

exhibited performance that is very close to the Cramer-Rao bound, whereas a maximum likelihood 

Gaussian detector deviated significantly as α varied from 2 to 1. Although numerically intensive, 

the myriad filters or detectors, based on a cost criterion derived from the α-stable pdfs, show 

significant improvement in detecting a signal in heavy-tailed noise over Gaussian detectors [7]. 

Similar performance was observed when processing data in a multi-user communication network 

[8]. The shortcomings of the Kalman filter and the linear-quadratic-Gaussian (LQG) controller 

when processing non-Gaussian noise data in the context of aircraft navigation [9] and radar glint 

[10] suggest that new filters and controllers for heavy-tailed pdfs are required. 

 
The robustness of Cauchy detectors discussed above, together with the deficiencies of the 

standard Gaussian estimators and controllers when exposed to impulsive noises, motivated the 

derivation of a sequential non-linear estimator for scalar linear dynamic systems with additive 

Cauchy process and measurement noises [11, 12]. Although Cauchy noises do not have a well 

defined first moment and have infinite second and higher moments [13], the conditional pdf (cpdf) 

of the system state given the measurement history was determined analytically and shown to have 

well defined, finite conditional first and second order moments [11]. 

 
Over the last three years, we have developed the theoretical basis for constructing minimum 

variance estimators and stochastic controllers for this class of systems. In our initial results for 

scalar dynamic systems, the conditional pdf of the scalar state given the measurement sequence 
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could be generated directly [11]. Partial fractions were used to update the conditional pdf at 

each measurement time. However, this methodology does not generalize when addressing dynamic 

systems with a vector-state. In [12] a scalar estimator was derived by generating the characteristic 

function of the unnormalized cpdf (ucpdf) in a recursive scheme. Although the two scalar estimator 

formulations are similar in form, the characteristic function approach is somewhat simpler than 

the scheme in [11]. It allows for a stronger result regarding the decay of the estimator parameters 

with time. Moreover, it was shown that this approach can be generalized to the multi-variable 

case [14, Appendix A], [15, Appendix B] and for the special two-state system [16], [17, Appendix 

C]. 

 
As shown in [14, Appendix A], the characteristic function of the ucpdf is composed of a sum of 

terms. Each term has the form of a coefficient, which is a function of the sign of a linear function of 

the spectral variables, multiplied by an exponential whose argument is a sum of absolute values of 

the same linear functions of the spectral vector. This analytic form persists through measurement 

updates and dynamic propagation. Since the characteristic function of the ucpdf is shown to 

be twice continuously differentiable [14, Appendix A], the conditional mean and the conditional 

variance are determined by evaluating the characteristic function and its first two differentials as 

the magnitude of the spectral vector goes to zero. 

 
Although a dynamic programming solution to the stochastic control problem does not currently 

appear tractable, a stochastic controller has been obtained for the model predictive or open-loop 

feedback formulation in the scalar case [18] and [19, Appendix D], and extended to the vector 

case [20, Appendix E], [21, Appendix F]. To ensure that the unconditional expectation of the cost 

function exists and remains finite for Cauchy uncertainties, and that the conditional expectation 

of the cost function can be determined in closed form, a new cost function is proposed. This 

cost function is composed of products of penalty functions on the state and control that are in 

the form of the Cauchy distribution. Although the conditional expectation of the cost function 

can be determined from the conditional pdf in the scalar problem, for the vector-state control 

problem Parseval’s Identity is used to transform the conditional expectation of the cost function 

to spectral domain. Then, the characteristic function of the ucpdf is used directly to determined 

the conditional expectation of the cost function in closed form [20, Appendix E], [21, Appendix F]. 

Results on the performance of this stochastic Cauchy controller strongly indicate that it handles 

outliers in the measurements dramatically well compared to Gaussian controllers. We present our 

current results for the vector discrete-time Cauchy filter and stochastic controller in section 2. 
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2 Current Results on Cauchy Filters and Controllers 
 
Over the last three years we have obtained impressive results for vector-state Cauchy estimation, 

which are detailed in [11, 12, 14–17, Appendices A, B & C], are summarized in section 2.1 and our 

novel control results, which are detailed in [18–21, Appedices D, E & F], are summarized in section 

2.2. 
 
 
 
2.1    Formulation and Derivation of the Cauchy Estimator 

 

 
The single-input single-output multivariable linear dynamic system1  is 

xk+1 = Φxk + Γwk ,  zk = Hxk + vk , (1) 

where  the  state  vector  xk   ∈ Rn,  scalar  measurement  zk ,  and  known  matrices  Φ  ∈ Rn×n,  Γ  ∈ 
Rn×1, and H ∈ R1×n.  The noise inputs are assumed to be independent with know Cauchy pdf. 
Specifically, wk is assumed to be Cauchy distributed with a zero median and a scaling parameter 

β > 0. Similarly, vk has a Cauchy pdf with a median of zero and a scaling parameter γ > 0. The 

characteristic functions of these scalar noises are assumed to be time independent and given by 

 
φW  ν̄ = e−β|ν̄|, φV   ν̄  = e−γ|ν̄|, (2) 

 
where these characteristic functions have a scalar argument ν̄. The initial conditions at k = 1 are 

also assumed to be independent and Cauchy distributed. Specifically, each i-th element x1i of the 

initial state vector x1 has a Cauchy pdf with a zero median and a scaling parameter αi > 0, i = 

1, . . . , n. The characteristic function of the joint pdf of the initial conditions, which is a function 

of a n-dimensional spectral variable ν ∈ Rn, is given by 
 

n n 
αi νi| 

I n \   fI n \ l    
1 1 1 

φX1   ν = e−   | 
i=1 

= exp − 
i=1 

αi|νi| = exp − 
i=1 

pi |(ai , ν)| + j(b1, ν) . (3) 

 
The last form was introduced for notational convenience to be used in the sequel.  We used the 

definitions 

p1 1  1 

i = αi,  ai  = ei, i = 1, . . . , n, b1 = {0}n, (4) 

where ei is a n-dimensional i-th unity vector and {0}n is n-dimensional vector of zeros. 

1The single-input single-output restriction only simplifies the presentation and appears to be easily relaxed. 
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φ − 

i 

z z z 

∞ ∞ 

2.1.1 Characteristic Function for the Un-normalized Conditional pdf 
 
 
Our goal is to compute the minimum variance estimate of xk  given the measurement measurement 

history or zk   = {z1, z2, · · · , zk } [14, Appendix A]. We begin by determining the characteristic 

function for the un-normalized conditional pdf at k = 1, where the conditional pdf at k = 1 is 
 

fX1Z1    x1, z1

 
 fZ1|X1   z1|x1  fX1   x1

 
 fV  z1 − Hx1  fX1   x1

 
 

fX1|Z1  x1|z1   = = 
fZ1 1

 
 

= 
fZ1 1

 
 fZ1 

  . (5) 
1 

 
The unnormalized conditional pdf (ucpdf) at k = 1 is simply the joint pdf of the vector state 

and scalar measurement and we will work explicitly with the form fV (z1 − Hx1)fX1 (x1). The 

characteristic function of the ucpdf is obtained as 
 

φ̄ (ν) = 
r∞ r∞ 

· · · f 
 

(x )f (z 1 — Hx )ejx1 ν dx = 
r∞ r∞ 

· · · φ (ν − η)φ̂ 
 
(η)dη. (6) 

X1|Z1 X1 1 V 1 1 

−∞ −∞ 
1 

(2π)n X1 V 
−∞ −∞ 

The first integral is a Fourier transform of a product of two functions. Using the dual convolution 

property, the second integral is a convolution in the ν domain between the associated characteristic 

functions φX1 (ν) given in (3) and φ̂V (η), the characteristic function of fZ1|X1 (z1|x1) = fV (z1 −Hx1), 

determined in [14, Appendix A] as 
 

φ̂V (ν) = 
r∞ 

· · · 
r∞ 

fV (z1 − Hx1)ejx1 ν dx1  = K(ν)φV 

( 
eT ν 

− 
Hen 

\ n−1 n 
2πδ(eiPnν), (7) 

i=1 
−∞ −∞ 

 

 T   T 
( 

jz1eT  \ ( T \ ( 
eT \ 

where Hen /= 0, Pn = I − H 
en , K(ν) = exp n ν , and φV en ν − = exp −γ 

 
 

n ν    
.
 

Hen Hen Hen 
  
Hen 

  

Substitution of the n − 1 delta functions of (7) into (6) reduces the n integrals to one as 
 
 

¯ 
X1|Z1 

1  
r 

(ν) = 
2π 

−∞ 

 
φX1 (ν − HTσ)φV 1  

r 
( σ)ejz1σ dσ = 

2π 
−∞ 

 
φX1 (ν − HTσ)φV (−σ)ejz1σ dσ, (8) 

 

where φV (−σ) = e−γ|σ|. 

The convolution integral in (8) is solved in closed form. Here we assume that each element in 

H is non-zero, i.  e., Hei  /= 0, i = {1, . . . , n}.  (See [14, Appendix A] regarding relaxing  

this condition.) To compute the integral, we define ρi = αi|Hei|, µi = eT ν/Hei, i = {1, . . . ,  
n}, 
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e−   n+1 ei 

y1|1 ei 

gi 

ei 

X1|Z1 

φ 

X1|Z1 

  

z2 

X1|Z1 
  

1 

1 

ρn+1 = γ, µ0 = −∞ and µn+1 = ∞. Hence, the convolution integral is restated and solved as 
 

φ̄ (ν) = 
r∞ 

i=1 ρi|µi−σ|+jz1σ 1 dσ = 
n+1   

g1|1
(y1|1

(ν))ey1|1(ν)
 

 
(9) 

X1|Z1 2π 
−∞ 

2π  i gi 
R=1 

 

where  
 
g1|1 

 
 
 

1|1 

 
 
 

1|1 1 

 
 

1|1 1
  

i  (ygi (ν)) = 

n+1 

(jz1 + ρR + ygi (ν))− — (jz1 − ρR + ygi  (ν))− 
n+1 

, (10) 

gi (ν) = 
  
 
 i=1 i/=R 

ρi sign(µi − µR), y1|1
(ν) = − 

  
 
 i=1 i/=R 

ρi|µi − µR| + jz1µR. (11) 

 
As shown in this first update, the coefficient (10) is always a function of sign(·) given by y1|1

(ν) 

in (11) where the argument of the sign(·) is always found in the argument of the absolute value 

given by y1|1
(ν) in (11). This is a general property the recursion for the characteristic function of 

the ucpdf for any update stage time k. 
 
 
 
2.1.2 Conditional Mean and Variance at k = 1 

 
 

The conditional mean and variance are computed by evaluating φ̄ (ν) and its first two deriva- 

tives at ν = {0}n or alternatively as ν → {0}n. 
¯ 

X1|Z1 
(ν) can be shown to be twice continuously 

differentiable [14, 15, Appendices A & B]. Thus, its first two derivatives can be evaluated along a 

fixed direction ν = Eν̂ while letting E → 0. The pdf of the measurement variable is obtained as 
 

 
fZ1 (z1) = φ̄ 

 
(Eν̂)

 
=  

E=0 

n ), 
αR|hR| + γ 

R=1 

π ( n 

1 + 
), 

αR|hR| + γ 
R=1 

 
\2 . (12) 

 
The minimum conditional-variance estimate is given by 

 

  1 
( 

∂φ̄ (Eν̂) 
\T 

 [α1 sign(h1) · · · αn sign(hn )]
T

 

x̂1(z1) = j fZ1 (z1) Eν̂ 
  
   
E=0 

= z1 n ), 
αR|hi| + γ 

R=1 

, (13) 
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1 

z 
l 

φ (ν) = φ 

φ φ 

φ 
φ 

X2|Z2 

X2|Z2 

2 

φ φ 

 
 

.  

∞ 

Φ, 

∞ 

The conditional variance is (x̃1 = x1 − x̂1) 

 
E[x̃1x̃T|z1] = 

 
f 
1 + 

 
 
 
 
 
 
 

2 
1 

(
),n 

   
α1

 
  |h1|  

2 
 

 
I n 
  

 
i=2 

 
 
 
αi 

...
 

 
\ 

|hi| + γ 

 
 

. . . −α1αn 

 
 

sign(h1) sign(hn) 
 

. 
  . 

 
 
 
 
 

(14) 

i=1 αi|hi| + γ) 
   
−α1αn sign(h1) sign(hn)    · · · 

αn 

|hn| 

I
n−1 
  

 
i=1 

\  
αi|hi| + γ  

 

Note that with one measurement, the n × n conditional variance is bounded and positive definite. 

Furthermore, the conditional variance is an explicit function of the measurement. 
 
 
 
2.1.3 Propagation to k = 2 and the Second Measurement Update 

 
 
The time propagated characteristic function to k = 2 is found in [14, 15, Appendices A & B] as 

 
¯ 

X2|Z1 

¯ 
X1|Z1 

(ΦT ν)e−β|ΓT ν|. (15) 

 
The convolution integral for the second measurement update is 

 
 

¯ 
X2|Z2 

1  
r 

(ν)  = 
2π 

−∞ 

 
¯ 

X2|Z1 
(ν − HT σ)e−γ|σ|+jz2σ dσ 

 

where z2  = {z1, z2}.  Since 
¯ 

X1|Z1 
(ν) is twice differentiable, then for the linear transformation 

¯ 
X1|Z1 (Φ

Tν) is also continuous.  By assuming HΓ /= 0, it can be shown that the first two 

derivatives of φ̄ (ν) are continuous.  If HΓ = 0, then e−β|ΓT
 
ν|  comes out of the convolution 

integral. Consequently, φ̄ (ν) does not have a continuous derivative because the derivative of 

e−β|ΓT ν| is only piecewise continuous and thus there is no estimate of x . 
 
 
 

2.1.4 General form of φ̄Xk|Zk (ν) 
 
 

In general, the convolution integral for the kth  measurement update is 
 
 

¯ 
Xk |Zk 

1  
r 

(ν) = 
2π 

−∞ 

 
¯ 

Xk |Yk−1 
(ν − HT σ)e−γ|σ|+jzk σ dσ, (16) 
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φ φ 

t 

n n 

t 

 B 

T 

where the measurement history is zk  = {z1, . . . , zk }.  It is assumed that HΓ /= 0 at each time 

step and that by induction 
¯ 

Xk−1|Yk−1 
(ν) is twice differentiable. Therefore, 

¯ 
Xk |Zk (ν) is twice 

continuously differentiable. It is expressed in a closed form [14, 15, Appendices A & B] as 
 

nk|k 

φ̄ ν     =     gk|k   
yk|k 

 
k|k 

Xk |Zk i 
i=1 

gi  (ν) exp yei  (ν) , (17) 

 
where 

 

yk|k 
k|k 
ei   

 
k|k 

 
k|k 

 
k k|k 

k|k 
ei   

 
k|k 

 
k|k 

 
k|k 

gi (ν) =   
R=1 

qiR   sign((aiR  , ν)) ∈ R , yei  (ν) = −  
 
R=1 

piR  |(aiR  , ν)| + j(bi    , ν). (18) 

 
In the above, qk|k ∈ Rk , pk|k 

, ak|k ∈ Rn, and bk|k ∈ Rn are all parameters computed recursively up 
iR iR iR i 

to time k. This functional form persists at every time step. 
 

Note that this form (17) is also consistent with the characteristic function of the ucpdf for the 

scalar system [12] 
 

k+2 

φ̄ (ν) =       a (k|k) + jb (k|k) sign(ν)  e−ωi(k|k)|ν|+jσi(k|k)ν . (19) 
Xk |Zk i i 

i=1 

 
The parameters ai(k|k) and bi(k|k) satisfy a linear discrete dynamic equation, from which it is 

shown that they converge to zero as k − i becomes large. Consequently, these decaying terms can 

be removed from the sum in (19). This property should generalize for the gk|k   yk|k 
(ν)   in (17), 

i gi 

in which one of the central goals of the proposed project is to prune the sum in (17) such that nk|k
 

remains bounded. 

 
There are some simplifications that occur in the two-state estimation problem [16], [17, Ap- 

pendix C]. A recursion in the terms in the argument of the exponential can be made explicit. A 

basis Bk for each term in the sum is recursive as 
 

Bk−1Φ  


  
E1   

 f 
0 1

l 
Bk  = 

 
ΓT

  , 1
  = 

 E  2 
 , A =  . (20) 

HA HA −1   0 

 
This basis is related to ak|k  ∈ Rn  in the general solution (18) in that every ak|k  

vector is coaligned 
iR iR 

with a row in Bk . This bases appears minimal and thereby all terms having the same argument 

of the exponential can be combined. Generalization of this result for the multivariate case will be 

considered also in the new project. 
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n 

  
n 

  1  ∂φ 
 
Eν̂ 

\T
   

∂ φ   n 

k|k 

k|k 

k 

  

z 

1 

j f z 

2.1.5 The Mutlivariable Estimator 
 
 
As shown in [14, 15, Appendices A & B], to construct the conditional mean and variance, choose 

k|k 
ν = Eν̂ where E > 0 and ν̂ is a fixed direction.  Assuming the condition that (aiR  , ν̂) 
=/ 
then 

0 ∀ (i, £), 

 
k|k k|k i 

sign((aiR  , Eν̂)) = sign((aiR  , ν̂)) = sR, (21) 
k|k 
ei 

yk|k k|k i k|k k|k k|k 

gi (Eν̂) =   
R=1 

qiR  sR = ygi  (ν̂), yei  (Eν̂) = E(ȳei  (ν̂), ν̂), (22) 

 
where si is a piecewise constant and (ȳk|k 

(ν̂), ν̂) is a constant. The pdf of the measurement history 
R 

is determined as 
ei 

 
 
 
fZk  zk   = φ̄ 

 
  

Eν̂
  

 

 
 
 
 

k|k 
t 

= 
  

 
 
gk|k    y 

 
 
 
k|k 

 
 
 
(ν̂) 

 
 
 
. (23) 

Xk |Zk 

 
The conditional mean of the state xk  is 

 
E=0 i gi 

i=1 

 

I 
¯ 

  
Xk |Zk   nk|k 

  1 t
 

 
gk|k 

 
yk|k  ν 

 
yk|k  ν , x̂k = E[xk |zk ] = j fZk     k ∂(Eν̂) 

  
   
E=0 

= 
j fZk 

 
zk

 i 
i=1 

gi  (ˆ) ¯e

i 

(ˆ) (24) 

 

and the second moment 
 

E[xk xT |zk ] = 
2 ̄  

Xk |Zk 

 
Eν̂

   
 

  =    
−1   

k|k 
t   

gk|k yk|k 
(ν̂) 

 
    

ȳ (ν̂) 

     T ȳ (ν̂) 
 
.  (25) 

k 2 
Zk 

 
zk

   
∂(Eν̂)∂(Eν̂)T 

   
E=0 

fZk     k 
i gi ei ei 

i=1 

For the error x̃k   =  xk  − x̂k ,  the  conditional  error  variance  can  be  evaluated  as  E[x̃k x̃T |zk ]  = 

E[xk xT |zk ] − x̂k x̂T . 
k k 

 

 
 
2.1.6 Numerical Examples of the Vector-State Cauchy Estimator 

 
 

Estimation results for a two-state system with Cauchy and Gaussian noises, related by a least 

square fit, are shown in Fig. 1.  For the two-state system, data can be streamed continuously by 

using a finite data window, as given in [17, Appendix C]. The error is shown to be in the sixth 

place, thereby insignificant. In the subfigure 1(a) we see that the Gaussian estimator error deviates 

from the minimal Cauchy conditional mean error in the Cauchy simulation. Also we note that the 

actual conditional standard deviation, generated by the Cauchy estimator, fluctuates dramatically 

with the Cauchy noises. For the Gaussian simulation of Fig. 1(b) both the Cauchy and the 

Gaussian filters perform almost identically, although the conditional standard deviation generated 
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by the Cauchy estimator slightly upper bounds the actual conditional standard deviation, a priori 
computed for the Gaussian estimator. Numerical results for the three-state Cauchy estimator can 

be found in [14, 15, Appendices A & B]. 
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Figure 1: Cauchy and Kalman Estimators for a stable system. Simulation parameters are: α1 = 

α2 = 0.8, γ = 0.5, β = 0.1, H = [1 1], Γ = [0.5, 1]T , and the eigenvalues of Φ are 0.8 ± .55j. 
Heavy lines are the state estimate. light lines depict the predicted standard deviation. 

 
 
 
 
2.2 The Stochastic Model Predictor Cauchy Controller 

 

 
A stochastic optimal control problem is formulated where the conditional performance index, 

which is the conditional expectation of the cost function, is taken with respect to the Cauchy 

conditional pdf. However, since only the characteristic function of the conditional pdf is available, 

a transformation to the spectral vector is required which then leads to a closed-form expression for 

the conditional expectation of the cost function. In order for the conditional performance index 

to be analytic, a new cost function is chosen. 
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The dynamic stochastic system 

 
xk+1 = Φxk + Λuk + Γwk , zk = Hxk + vk (26) 

 

 
with measurement history  

zk = {z1, . . . , zk } (27) 
 

is the same as (1) except for the addition of the scalar control uk  and known matrix Λ ∈ Rn. 

To determine a form of the conditional performance index, where the control enters in a more 

convenient manner, the state vector is decomposed into a dynamic system forced by the control 

and a dynamic system forced by the underlying random variables. Given this decomposition, we 

show that the control has to be adaptive to only the σ-algebra generated by the measurement 

history associated with the stochastic part of the state decomposition. 

 
Consider the linear, discrete-time, scalar stochastic system of (26) with the measurement his- 

tory given by (27). Let uk be adaptive to the filtration σ-algebra σk generated by the measurement 

history zk . Filtration implies that the collection of σ-algebras σk have the property that if j ≤ k, 

then σj ⊆ σk [22]. Therefore, filtration is the evolution of the σ-algebra generated by measurement 

history through time. Adaptation means that the control is a measurable function of events on this 

σ-algebra, i.e., this ensures that the control sequence is causal. Now consider the decomposition 

xk = x̃k + x̄k  where 

 
x̃k = Φx̃k−1 + wk−1, 

x̄k = Φx̄k−1 + uk−1, 

z̃k = Hx̃k + vk , (28a) 

z̄k = Hx̄k . (28b) 

 
Here, x̃k and z̃k are the state and the measurement of the subsystem containing all the underlying 

random variables, i. e., wk , vk , and the initial condition x̃0, which is Cauchy distributed with zero 

median. Similarly, x̄k and z̄k are the state and measurement of a dynamic system driven by uk 

with initial condition x̄0. 

 
The measurement history can be decomposed as zk = z̃k + z̄k where 

 
z̃k = {z̃0, · · · , z̃k }, z̄k = {z̄0, · · · , z̄k }. (29) 

 
In the following it is shown that the control is measurable on events generated by z̃k  only. 

Theorem 1. Consider the filtration σ − algebra σ̃k generated by z̃k , with the decomposition zk = 

z̃k + z̄k . For z̃k ∈ σ̃k and σ̃k−1 ⊂ σ̃k , z̄k is adapted to σ̃k−1  and uk  is adapted to σ̃k . 

Proof. Start with k = 0.  The initial state is decomposed as x0  = x̃0 + x̄0, where x̄0  is a given 
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k 

E  ψ  X k 

  
k k 

k+1 k 

k+1 

i 

ψ  X k 

k k 

non-random parameter. The measurement decomposes as z0 = z̃0 + z̄0, where z̄0 = Hx̄0 is a given 

non-random parameter and z̃0 = z̃0 ∈ σ̃0. Then, u0, which is determined by z0, is adapted to σ̃0. 

At k = 1, both x̄1  = Φx̄0 + u0  and z̄1  = Hx̄1  are adapted to σ̃0, and thus z̄1  is adapted to σ̃0. 

For the measurement at k = 1, z̃1 ∈ σ̃1, z̃1 ∈ σ̃1, and σ̃0 ⊂ σ̃1. Hence, since u1 is determined by 

z1 = z̃1 + z̄1, it is adapted to σ̃1. Recursively to any k, z̄k is adapted to σ̃k−1. With z̃k ∈ σ̃k , and 

σ̃k−1 ⊂ σ̃k , uk that is determined by zk = z̃k + z̄k is adapted to σ̃k . 
 
 
 

2.2.1 Cost Criterion for Controller of Cauchy System 
 
 
Since dynamic programming does not have a tractable solution [18, 19, Appendix D], a multi- 

step model predictor Cauchy controller is proposed. The maximization for the unconditional 

expectation of the cost function is 

 
J ∗ = max 

U p−1∈F 

     p 
k+1 , U p−1   

f 

 
 
l f l 

= E max E  ψ  X p , U p−1    z
 

= E max Jz̃ = E  J ∗    ,   (30) 
U p−1∈F k+1 k U p−1∈F z̃k 

 

where ψ  X p , U p−1    is given in (31), the unconditional expectation is assumed to exist and the 

expectation is nested where the outer expectation is over the measurement history and the inner 

expectation is over all other random variables. The operations of maximization and expectation 

have been interchanged [23] and the conditioning on z̃k is justified by Theorem 1. The arguments 

of the cost function are the projected state and control, given as X p :=  {xk+1, . . . , xp} and 
p−1 p−1 

Uk := {uk , . . . , up−1}, Uk ∈ F , where F is the class of piecewise continuous functions adapted 

to z̃k . 
 

The cost function for the Cauchy dynamic system has penalty functions of the Cauchy pdf 

form as 
 

p−1 p−1 
I 

ζ /π n η /π 
\

 
ψ  X p , U p−1   = 

n 
£u (ui) · £x (xi+1) = 

n  
 

n   i+1,r · . (31) k+1 k i i+1 2 2 2 2 

i=k i=k ui + ζi r=1 
xi+1,r + ηi+1,r 

 
To compare the Cauchy controller to a Gaussian controller, an exponential cost function is sug- 

gested as 
p−1 

f 1 2 
n 

1 2 

l
 

  p 
k+1 , U p−1    = 

n e − 2 riui · 
n 

e − 2 qi+1,r xi+1,r . (32) 

i=k r=1 

A solution to this LEG problem can be found essentially in [23], but it is explicitly given for the 

scalar problem in [19, Appendix D]. 
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r 

p|Zk Z Xp|Zk Zk 

J∗ 

p−1 

k 

π 

2.2.2 The Conditional Performance Index in Terms of the Spectral Variables 
 
 
Since only the characteristic function of the ucpdf is available (See section 2.1.5) and thereby the 

characteristic function of the conditional pdf, the conditional performance index2 can be rewritten 

by applying Parseval’s identity directly [20, 21, Appendex E & F] as 
 Ip−1 \ +∞  +∞ n ζi/π 

r r
 

JZ̃ k  = u2 2 · · · £xp (x̃p + x̄p) · fX̃p|Z̃ k (x̃p|z̃k k ) dx̃p,1 . . . dx̃p,n 

i=k 
 

1 = 

i + ζi 
Ip−1 
n 

−∞ 
 
ζi/π 

−∞ 
\ +∞ 

 
 

+∞ r 
xp (ν) · φX̃p|Z̃ k (ν) dν1 . . . dνn 

(2π)n u2 + ζ2 · · · L∗ 
i=k 

1 
Ip−1 

i i 
 
 ζ /π 

−∞ 
\ +∞ 

−∞ 
+∞I n \ 

= 
(2π)n 

n i u2 + ζ2 

r r 
· · · n 

e− ηp,r |νr | + jx̄p,r νr φX̃p|Z̃ k (ν) dν1 . . . dνn , (33) 

i=k i i 
−∞   −∞ r=1 

 

where L∗ refers to the complex conjugate of L.  Given the projected form of the characteristic 

function of the ucpdf (17) and that φX̃ ˜ (ν) = f˜ (z̃)φ̄ ˜ ˜ (ν), J ˜ can be evaluated in closed 

form. In the next section, the closed form of the conditional performance index is determined 

explicitly for the scalar system. For the two-state system, the conditional performance index is 

found in closed form in [20, 21, Appendex E & F]. 
 
 
 
2.2.3 Closed-Form Cost Criterion: Scalar State System 

 
 
The scalar state example considers only a weight on the terminal horizon state xp, a weight on 

ui ∀i ∈ {k, . . . p − 1}, and the terminal horizon is m = p − k. The cost criterion is 
 

   1  
Ip−1    ζ /π  

\ r∞   
˜ k 

= max 
= 
n i (2π) u2 2 e−ηp |ν| + jx̄pν φX̃p|Z̃ k (ν) dν, (34) 

p−1 

Uk ∈F i=k i + ζi 
−∞ 

where (19) is used to obtain the projected form of the characteristic function of the ucpdf φ̄ ̃  ˜ (ν). 

The cost criterion, found in closed form as 
Xp|Zk 

n 1   k+2 
  1 ai(x̄p + σi)ηp + (bi − aix̄p)(ηp + ωi) 

JZ̃ k  = u2 2  
· 

η ω (x̄ + σ )2 + (η 
+ ω )2 , (35) 

i=k i + ζi p i=1 i p i p i 

is to be maximized with respect to U p−1 ∈ F and subject to the deterministic state as propagated 
m 

as x̄p = Φmx̄k + 
), 

Φm−1Λuk+i 
i=1 

−1. 

2For simplicity we consider only the terminal state in cost function. 
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0 

u∗ 

J 0 0 

˜ 

= ∗ 
Z0 

2.3 Numerical Examples of the Scalar and Two-State Stochastic Con- 
troller 

 
To obtain insight into the properties of the Cauchy stochastic controller, the one-step one-measurement 

example is first analyzed in section 2.3.1.  Next, the multi-step numerical simulation results are 

given in section 2.3.2, which illustrate the Cauchy controllers behavior in the presence of dominate 

Cauchy measurement noise and then dominant Cauchy process noise. 
 

 
 
2.3.1 One-Step One-Measurement Examples for Scalar and Two-state Systems 

 

 
The value of the optimal control signal at k = 0, i.e., u∗, as a function of the first measurement 

z̃0, is determined. Specifically, we examine the value of the optimal control signal at k = 0, i.e., 

0(z0), as a function of the first measurement z̃0, that varies due to the measurement noise v0 [19, 

Appendix D], while considering the one step horizon, i. e., m = 1. The parameters for the system 

and Cauchy signals are first chosen as 
 

 
Φ = 1, H = 1, α = 0.1, β = 0.02, γ = 0.5, x̄0 = 0. (36) 

 
Initially, no penalty is introduced on the control signal, i.e., the term ζ2/(u2 + ζ2) is removed from 

0 0 0 

the objective function in (35), i.e. ζ0 → ∞ while the state at k = 1 is weighted with η1 = .7. 

Therefore, we first examine the case of one step horizon, i.e., m = 1. Substituting these parameters 

into (35), the performance index becomes 
 

0.1148(4.1667z2 − 1.0163u0z0 + 1) 
˜ 

(z2 + 0.16)(u2 + 0.6724) 
+

 
0.03416(7.5820z2 + 3.4153u0z0 − 1) 

(z2 + 0.16) ((u0 + z0)2 + 1.22) (37) 
0 0 0 

 
The optimal controller can be obtained by minimizing (37) with respect to u0.  The necessary 
optimality condition, ∂J ∗ 

Z0 

/∂u0 = 0, reduces to finding the roots of the fifth-order polynomial 

 
l5u5 + l4u4 + l3u3 + l2u2 + l1u + l0 = 0, (38) 

 

 
where 

 
l5 = 1, l4 = 3.5z0, l3 = (5.2315z2 + 3.6681) l2 = (3.6806z3 + 6.6305z0), 

0 0 

l1 = (0.9491z4 + 3.2124z2 + 2.9623), l0 = (0.07782z2 + 0.3992)z0. (39) 
0 0 0 

 
This polynomial always has at least one real root. If three roots are real, then there are two local 

maximum values and the larger of the two gives the optimal control. 
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Solving the polynomial numerically, the optimal control signal is plotted versus the measure- 

ment z̃0 in Fig. 2(a) for ζ0 = ∞ as well with weighting ζ0 = 1, 2, 3 and γ > α. Also included is 

the LEG controller where u∗ = −x̂, i.e., it is linear in z (see [19, Appendix B] for details of the 

LEG model predictive controller). The Cauchy controller in Fig. 2(a) for large z̃0 goes toward zero. 

This is in sharp contrast with the LEG controller, which remains linear in the measurement. This 

is a significant difference in behavior between the Cauchy and Gaussian optimal controllers that 

can be deduced analytically from (38). If u∗(z̃0) is finite, the dominant term in (38) as |z̃0| → ∞ 
is l1u∗(∞), or lim|z̃0|→∞ u∗(z̃0) → 0.  Therefore, the problem of handling outliers, which occur 

for the Cauchy pdf, appears to be resolved by the Cauchy controller explicitly, and not in some 

filter as has been done traditionally. Note that the controller design process explicitly uses the 

parameters γ > α, i. e., it should expect more impulsive measurement uncertainty than process 

uncertainty. If γ < α, then the Cauchy controller behaves approximately like the LEG linear con- 

troller in Fig. 2(b), i. e., it should expect more impulsive process uncertainty than measurement 

uncertainty. The effect of reducing ζ0 from ∞ to 5 has no effect on either the Cauchy or LEG 

controllers, although further reductions do have a small effect as seen in Fig. 2(a) where γ > α 
and approximately linear Cauchy controller for γ < α as shown in Fig. 2(b). However, for γ < α 
a homotopy optimization method [19, Appendix B] keeps the optimum value on the ridge that 

emphasizes the terminal state, rather than emphasizing small control values. This occurs even if 

eventually the control results from a local optimum and not the global optimum. 
 
 

0.05 20 
 

0 0 
 

−0.05 −20 
 

−10 −5 0 5 10 −30 −20 −10 0 10 20 30 
  z̃0     z̃0    

(a) η = .7, α = 0.1, γ = 0.5, β = 0.02, ζ = 2, 3, 4, ∞ (b) η = .7, α = 0.5, γ = 0.1, β = 0.02, ζ = 2, 3, 4, ∞ 
 

Figure 2:  Scalar Cauchy and Gaussian one-step controller with parameters variations in ζ for 

γ > α left and γ < α right. 
 
 

For a two-step prediction of a two-state stochastic controller in [20, 21, Appendices E & F], 

all the simulations use the same system dynamics with H = [1  1], ΓT = [0.5  1], ΛT = [0.5  1], 

m = 2, and the eigenvalues of Φ are 0.8 ± 0.55j. The terminal state weightings are η = [1  1], 

and when control weightings are used they are ζ = 10. The initial condition’s scaling parameters 

are given by α = [0.8  0.8], and the process and measurement noise parameters β and γ are either 

0.5 or 0.1. The first set of examples are shown in Fig. 3. These figures show the applied optimal 

control input at the first time step given the first measurement. In the two cases presented, all the 

systems parameters are the same, except in Fig. 3(a) γ > β (i.e., more measurement than state 
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uncertainty), and in Fig. 3(b) β > γ (i.e., more state than measurement uncertainty). 
 

The example in Fig. 3(a) shows that the Cauchy controller is nearly linear for small measure- 

ments and reduces its control effort to zero as the measurement deviations become large. This is 

in contrast to the LEG controller, which is linear and thus responds strongly to large measurement 

deviations. This behavior in the Cauchy controller occurs when the measurement uncertainty is 

larger than the state uncertainty. In the opposite case shown in Fig. 3(b), the measurement has 

less uncertainty than the state. Here, the Cauchy controller’s response closely matches that of the 

LEG in a neighborhood of the origin, and in fact responds even more strongly than the LEG for 

large measurement deviations. 

 
The three different curves in both of these figures depict the control signals for three different 

control weights: no control weight, ζ = 10, and ζ = 5. As expected, heavier control weights (i.e. 

smaller ζ) reduce the control effort. Even without any control weighting, the response in Fig. 3(a) 

goes to zero for large measurement deviations.  The fact that this behavior is seen when there 

is no control weighting implies that the attenuation of the control signal for large measurement 

deviations is due to the cpdf and not the objective function. Moreover, this behavior is not shared 

by the LEG controller that uses a similar objective function but assumes light-tailed, Gaussian 

distributions. 
 

 
 
2.3.2   Multi-Step Numerical Example for the Scalar and Two-State System 

 
 
The dynamic characteristics of the Cauchy optimal controller of the scalar dynamic system, ob- 

tained by maximizing the performance index in (30), are explored through several multi-step 

numerical examples. The Cauchy optimal predictor control results are compared against the least- 

squares equivalent LEG predictor controller and the Kalman filter [19, Appendix D]. The example 

that is discussed in this section is a stable system with Φ = 0.95, H = 1, and a horizon length of 

m = 2. The state weight parameter is chosen as ηp = ηk+2 = 0.7, while the control weights are 

chosen as ζi = 8, i = k, k + 1. The noise parameter values β and γ are interchanged to see how 

the controller performance changes when it is designed for a large measurement noise impulse in 

contrast to when it is designed for a large process noise impulse. 

 
The simulations results are depicted in Figs. 4 where the system parameters are given. First, 

for γ = 0.1 and β = .02, depicted in Fig. 4(a) when the noises are small, the Cauchy and the LEG 

controllers exhibit similar performance. However, they behave rather differently when a large 

measurement pulse occurs. A measurement noise pulse does not represent a state deviation and 

thus, for proper regulation, the controller should ignore that measurement. The Cauchy predictive 

controller, designed for γ > β, is able to make this distinction, whereas the LEG predictive 
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Figure 3: Optimal control vs the measurement for the first time step. 
 

 
controller reacts linearly to all the pulses and does not differentiate as shown in Fig. 4(a). At time 

steps k = 2 and k = 13 process noise pulses occur, and although both controllers react to them 

and are able to overcome this deviation, the Cauchy controller does so much quicker than the LEG 

by applying a much larger control effort. The Cauchy applies a larger control because its gain for 

small measurement values are higher than that of the LEG. Conversely, when a large measurement 

pulse occurs at k = 51, the Cauchy controller ignores it, applying almost zero control, whereas the 

LEG controller applies a very large control input that causes the state to deviate away from zero, 

which then required additional control effort to correct. This way the Cauchy controller manages 

to avoid unnecessary actuation and thus maintains the system performance. When γ < β, the 

behavior of the Cauchy and LEG controller is similar, as shown in Fig. 4(b). This demonstrates 

the same linear behavior as was seen in Fig. 2(b). 

 
In [20, 21, Appendices E & F], the two-state, multi-step example uses the same dynamic system 

as the two-state, two-step, single measurement example where m = 2 and ζk = ζk+1. In Fig. 5(a), 

there is more uncertainty in the state measurement noise than in the process noise. When large 

measurement deviations occur (such as at k = 52), the Cauchy controller’s effort is very small even 

though there is no weighting on the control inputs. In contrast, the LEG controller responds with a 
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Figure 4: 2-step Cauchy and Gaussian controllers with β and γ parameters interchanged. 
 

 
large control effort that drives the states from their regulated state of zero. When the measurement 

noise density parameter dominates the process noise density parameter in constructing the Cauchy 

controller, the effect of measurement outliers is mitigated, while still responding to state deviations 

due to process noise. In the Gaussian simulation, shown in Fig. 5(b), both controllers perform 

identically. 

 
 
 
3   Conclusions 

 
The current results of state estimation and control in linear, discrete time systems with addi- 

tive Cauchy noises are summarized in References [11, 12, 14–18, 20, 21, 24–28, Appendices A-F]. 

Although closed-form solutions, especially for the state estimation problem, are presented in those 

publications, they entail a significant numerical complexity that may limit their real-time applica- 

tion in practical engineering systems. 

 
The estimator complexity stems from the representation of the associated characteristic func- 
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Figure 5: Cauchy and Gaussian controller performance for two-state system. 
 

 
tions of ucpdf as a continuously growing sum of terms, each of which depends on the entire history 

of the measured data and intermediately computed parameters, as can be seen in the references 

and summarized briefly in Section 2.1.5. For scalar and two-state systems, compact and simplified 

representations were found to represent those characteristic functions [12, 16]. Moreover, for the 

scalar system case, efficient methods were found to prune the terms of the characteristic function 

while bounding the error of the approximated result [12]. However, by using a fixed data window, 

measurement data can be streamed continuously with insignificant error for the two-state system 

[17, Appendix C]. Although the determination of the controller requires a numerical optimization 

procedure [20, 21, Appendix E & F], the Cauchy controller demonstrates how to handle outliers, 

an issue that has plagued designers who use Gaussian control algorithms. 
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MULTIVARIATE CAUCHY ESTIMATOR 
WITH SCALAR MEASUREMENT AND PROCESS NOISES 

MOSHE  IDAN∗  AND  JASON  L.  SPEYER† 
 

 
Abstract. The conditional mean estimator for a n-state linear system with additive Cauchy measurement and process noises 

is developed. It is shown that although the Cauchy densities that model the initial state, the process noise and the measurement 
noise have undefined first moments and an infinite second moment, the probability density function conditioned on the measurement 
history does have a finite conditional mean and conditional variance. For the multi-variable system state, the characteristic function 
of the unnormalized conditional probability density function is sequentially propagated through measurement updates and dynamic 
state propagation, while expressing the resulting characteristic function in a closed analytical form. Once the characteristic function 
of the unnormalized conditional probability density function is obtained, the probability density function of the measurement history, 
the conditional mean and conditional variance are easily computed from the characteristic function and its continuous first and second 
derivatives, evaluated at the origin in the spectral variables’ domain. These closed form expressions yield the sequential state estimator. 
A three-state dynamic system example demonstrates numerically the performance of the Cauchy estimator. 

 
Key words.  Cauchy probability density function, non-linear estimation with heavy tailed noises, characteristic functions 
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1. Introduction. In many engineering, economic, telecommunications, and science applications the underly- 
ing random processes or noises have significant volatility, which are not captured by Gaussian distributions [12]. 
Rather than light-tailed Gaussian distributions, heavy-tailed distributions have been shown to better represent 
these volatile random fluctuations. Examples are radar and sonar sensor noise [6] and air turbulent environment 
noise [9]. Our objective is to develop a filtering technique for linear dynamic systems with heavy-tailed distributed 
noises while using a particular case of symmetric alpha-stable (Sα-S) distributions [10]. In its simplified form, Sα-S 
distributions of scalar random variables are characterized by their characteristic function φ(ν) = e−σ |ν|α , where 
o and α are parameters and ν is the spectral variable. In this class, α = 1 and 2 yield the Cauchy and Gaussian 
distributions, respectively. For α ∈ (0, 2), all the densities have infinite variance. 

In the detection of a radar signal in clutter, the in-phase component of radar clutter time series agrees extremely 
well with a Sα-S probability density function (pdf) with α = 1.7 [13]. For α ∈ [1, 2] a maximum likelihood Cauchy 

detector, which is in the class of myriad filters [1], exhibited performance that is very close to the Cramer-Rao 

bound, whereas a maximum likelihood Gaussian detector deviated significantly as α varied from 2 to 1. The 
myriad filters or detectors, based on a cost criterion derived from the α-stable pdfs, show significant improvement 
in detecting a signal in heavy tailed noise over Gaussian detectors [8], although they are numerically intensive. 
Techniques for enhancing the estimation robustness performance of Gaussian filters attempt to mitigate the effect 
of outliers due to impulsive measurement and process noise. These estimation techniques adjust to the measurement 
data by incorporating ad hoc heavy-tailed densities into the estimation scheme.  For example, [?] robustifies the 
Kalman filter by replacing the Gaussian densities with heavy-tailed symmetric Student’s-t densities, which behave 
much like the Gaussian about their medians. Robust filters with data-dependent mean-square error recursions [7] 
have similar properties. Fortunately, our recursive estimator, without approximation, contains these robustness 
features and have motivated the derivation of a sequential non-linear estimator for scalar linear dynamic systems 
with additive Cauchy process and measurement noises [3, 4]. Although Cauchy noises do not have a well defined 
first moment and have infinite second and higher moments [5], the conditional pdf (cpdf) of the system state given 
the measurement history was determined analytically and shown to have well defined finite conditional first and 
second order moments [3]. 

Unfortunately, the recursion scheme for generating the cpdf directly for a scalar linear system [3] does not 
generalize for the vector state. In [4] a similar estimator was derived by generating the characteristic function of 
the unnormalized cpdf (ucpdf) in a recursive scheme. This approach is somewhat simpler than the scheme in [3], 
allows for a stronger result regarding the decay of the estimator parameters with time, and can be generalized to 
the multi-variable case. 

The generalization of the characteristic function of the ucpdf approach [4] to the multi-variable case is the essence 
of this paper, which is organized as follows. We begin by formulating the estimation problem for a n-dimensional, 
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discrete-time, linear system forced by scalar Cauchy process noise and a scalar measurement with additive Cauchy 
measurement noise in section 2. In section 3 we show how the characteristic function for the ucpdf of the system 
state conditioned on the measured history is computed sequentially for the first two measurement updates and 
a time propagation step. This sequential exposition suggests the general form of the characteristic function for 
the ucpdf given in section 4. Fundamental to obtaining this sequential estimator is the closed form solution to a 
convolution integral that is given in Appendix B and used for the measurement update at each time step. In section 
5 we prove that under a mild condition on the system input and output matrices the characteristic function of the 
ucpdf is twice continually differentiable. This yields closed form analytical expressions for the minimum variance 
estimate of the states and the estimation error conditional variance. In section 6 a three state system is used to 
illustrate the performance of the sequential estimator. We offer some concluding remarks in section 7. 

2. Problem Formulation. We consider the single-input-single-output multivariable linear system 

(2.1) xk+1 = Φxk + Γwk , zk = Hxk + vk , 

with state vector xk  ∈ Rn, scalar measurement zk , and known matrices Φ ∈ Rn×n, Γ ∈ Rn×1, and H ∈ R1×n.  The 
noise inputs are assumed to be independent Cauchy distributed random variables. Specifically, wk is assumed to 
be Cauchy distributed with a zero median and a scaling parameter β > 0. Similarly, vk has a Cauchy pdf with a 
median of zero and a scaling parameter γ > 0. The characteristic functions of these scalar noises are assumed to 
be time independent and given by 

(2.2)                                               φW  ν̄ = e−β|ν̄|,   φV  ν̄ = e−γ|ν̄|. 

These characteristic functions have a scalar argument ν̄. The initial conditions at k = 1 are also assumed to be 
independent Cauchy distributed random variables. Specifically, each i-th element x1i of the initial state vector x1 
has a Cauchy pdf with a zero median and a scaling parameter αi > 0, i = 1, . . . , n. The characteristic function of 
the joint pdf of the initial conditions, which is a function of a n-dimensional spectral variable ν ∈ Rn, is given by 

 
n n 

αi νi 
( n \   f( n \ l    

1 1 1 
(2.3) φX1   ν  = e− 

i=1 

|   | = exp − 
i=1 

αi|νi| = exp − 
i=1 

pi |(ai , ν)| + j(b1, ν) . 

The last form was introduced for notational convenience to be used in the sequel. We used the definitions 

(2.4) p1 = αi,  a1 = ei, i = 1, . . . , n, b1 = {0}n, 
i i  1 

where ei is a n-dimensional i-th unity vector and {0}n is n-dimensional vector of zeros. In fact, any distribution of 

the initial conditions can be handled by the derived estimator as long as its characteristic function is of the form 
given in (2.3) with any vectors a1 and b1, and parameters p1 > 0. 

i 1 i 
The goal is to compute the minimum variance estimate of xk given the measurement history or 

yk =  z1 z2 · · · zk   . 

3. Initial Derivations. The method proposed to solve this Cauchy estimation problem entails propagating the 
characteristic function of the cpdf of the state vector given a history of measurements. Evaluating this characteristic 
function and its derivatives at the origin of the spectral vector ν will provide the desired state estimate and its error 
variance. The characteristic function is initiated by the expression given in (2.3). It changes during a measurement 
update when a new measurement is processed, and during time propagation affected by the process noise input. We 
begin by showing how this characteristic function is computed for the first two measurement updates and one time 
propagation step. This will suggest the general form of the characteristic function and hence the general estimator. 

3.1. Measurement Update at k = 1. Given the initial characteristic function of the system state (2.3), we 
are interested in computing the characteristic function of the initial state x1 conditioned on the initial measurement 
z1 = Hx1 + v1. The desired characteristic function is given by 

 
(3.1) φX1 |Z1  ν = 

 ∞ 

· · · 
 ∞ 

fX1 |Z1   x1|z1  e 

 
 
jνT x1 

 
 
dx1, 

−∞ −∞ 

where the measurement history is simply y1 = z1 and the cpdf fX1 |Z1   x1|z1   is computed as 

fX1 Z1   x1, z1
 
 fZ1 |X1   z1|x1  fX1   x1

 
 fV  z1 − Hx1  fX1  x1

 
 

(3.2) fX1 |Z1   x1|z1   = fZ1 z
 = fZ1 z

 = fZ1   z1 



φ 1 

φ 

  

i 

1 

1 

T 
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with 

(3.3) fZ1   z1   = 

 ∞ 

· · · 
 ∞ 

fX1 Z1   x1, z1  dx1 = 

 ∞ 

· · · 
 ∞ 

fV   z1 − Hx1  fX1   x1  dx1. 

Hence, 

−∞ −∞ 

1 

−∞ −∞ 

 ∞  ∞ 
jνT x1 

(3.4) φX1 |Z1  ν = fZ1   z1 
· · · 

−∞ −∞ 

fV   z1 − Hx1  fX1   x1  e dx1. 

The subsequent derivations can be simplified by avoiding the division by fZ1   z1   in (3.2) and (3.4). Thus we 
use the unnormalized cpdf and its characteristic function defined by 

(3.5) f̄  x1|z1                     = fX |Z    x1|z1   fZ   z1   = fV  z1 − Hx1   fX   x1   , 

and 

(3.6) 

X1 |Z1 
 
 
 
 

¯ 
X1 |Z1 

 
 
 
  
ν  =

 

1     1 
 
 
 
 

 ∞ 

· · · 

1 
 
 
 
 

 ∞ 

fV  z1 − Hx1  fX   x1  ejν 

1 
 

 
 
 
 
 
 
 
x1 dx1. 

−∞ −∞ 

When the actual (normalized) functions are needed for, e.g., computing the state estimates, the normalization factor 
can be easily determined by evaluating φ̄ 

 
x1|z1

  
at ν = {0}n, i.e., fZ  

 
z1

  
= φ̄ 

 
{0}n

  
. 

X1 |Z1 1 X1 |Z1 

The integral in (3.6) resembles a Fourier transform of a product of two functions.  Using the dual convolution 
property of Fourier transforms, it is shown in (A.7) of Appendix A that for a scalar measurement z1, and thus a 
scalar function fV  · , the integral in (3.6) can be expressed as 

 ∞ 

(3.7) ¯ 
X1 |Z1 

 
ν
  
=   

1 
2π 

−∞ 

φX1 

 
ν − HT η

  
φV 

 
−η

  
ejz1 η dη, 

where φV    ·  and φX1    ·  were defined in (2.2) and (2.3), respectively.  Using these expressions, the integral in (3.7) 

can  be  restated  as 

 ∞ f( n \ l 
(3.8) φ̄ ν     =  1

 
exp − p1|(a1, ν − HT η)| + j(b1, ν − HT η) − γ|η| + jz η  dη 

X1 |Z1 2π 
−∞ 

1 ∞ 

i i 1  1 
i=1 
f( n \ l 

ej(b1 ,ν) 
= exp − p1|(a1, ν) − Ha1η| − γ|η| + j z1 − Hb1   η dη. 

2π i i i  1 i=1 
−∞ 

This integral is solved using the methodology presented in Appendix B.1. For that, the coefficients of η in 
the absolute value term of (3.8) have to be normalized to one. Clearly, this cannot be attained if some of these 
coefficients are zero. Hence, first we assume that 

(3.9) Ha1 /= 0, i = 1, . . . , n, 

or equivalently that all the elements of H = 
f
h1 h2 · · · hn

l 
are nonzero. With this assumption, (3.8) is restated 

as 
 
 
(3.10) φ̄ ν     = e 

j(b1 ,ν)  ∞ ( 
exp 

 
n+1 
  

ρ
 

 
 µ , ν 

\ 
η + jζ η 

 
 dη, 

 
 
 
where we defined 

X1 |Z1 2π 
− 

−∞ 
 
i=1 

i |( i ) −  | 1 

 

(3.11a) ρi = p1|Ha1|, µi = a1/(Ha1), i = 1, . . . , n, 
i i i i 

(3.11b) ρn+1 = γ, µn+1 = {0}n, ζ1 = z1 − Hb1. 



1 

i 

i 

y1|1 

y1|1 

1 

a a 

 

1 1 

1 

 a 
i 

i  

t 

ei 

X1 |Z1 

t 

   − 
n 

 
  i 

 
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Using the results in (B.9) and (B.10), while associating ξi  and z in the later with (µi, ν) and ζ1, respectively, 

the integral in (3.10) is evaluated as 
 
 

n+1 
 

n+1 
   

n+1 
(3.12) φ̄ ν     = ej(b1 

,ν) 

  
g1|1   

ρ sgn ( µ µ , ν )
 

exp 
         ρ µ µ , ν + jζ µ , ν  

X1 |Z1  
 
 
 

n+1 

i 
i=1 

 
 =1 
 
/=i 

(   −  i )  − 
 =1 
 /=i 

  |(    −  i )| 1( i ) 

=     g1|1   y1|1 1|1 
i 

i=1 
gi (ν) exp yei  (ν)  , 

where the coefficient functions g1|1
(·) are given by 

(3.13) g1|1   y1|1
(ν)  =  

1     jζ + ρ + y1|1
(ν) 

−1
 

 
jζ ρ + y1|1

(ν)  
−1   

. 
i gi 

2π 1 
i gi — 1 −  i gi 

The arguments of g1|1
(·) and the exponents in (3.12) are 

(3.14a) gi (ν) = 

n+1 
  
 
 =1 
 
/=i 

ρ sgn ((µ  − µi, ν)) = 

n+1 
  
 
 =1 
 
/=i 

ρ sgn ((ai  , ν)) , 

 
(3.14b) ei (ν) = − 

n+1 
  
 
 =1 
 
/=i 

ρ |(µ − µi, ν)| + j(ζ1µi + b1, ν) = − 
n+1 
  
 
 =1 
 
/=i 

ρ |(ai , ν)| + j(b 1|1 
i 

, ν), 

where, while using (3.11), for £ /= i we have defined 

1 1 i /= n + 1 

 
Ha1 

Ha1 £ /= n + 

1 

    a1 

− 
 

a1 i 

1|1 
   z1 − Hb1 

i 
1 + b1 i /= n + 1 

(3.15) ai   = µ  − µi = 
  

Ha1    
i = n + 1 ,  bi = ζ1µi + b1 =  1 Hai 

1  i − Ha1 
£ = n + 1 

b1 i = n + 1 

To simplify the notation and subsequent derivations, specifically to avoid the £ /= i exclusion in the sums  

of (3.14), the elements in these sums are renumbered sequentially, i.e., £ ∈ [1, n] for each i-th term. The 

renumbered vectors ai  will be denoted by a1|1
.  To accommodate subsequent derivations, the coefficients ρ  in  

the sums of 
(3.14) will be marked differently for y1|1

(·) and y1|1
(·): we will use q1|1 

for the former and p1|1 
for the latter. The 

gi ei 1|1 
i i  

1|1 
parameters z and ρi  in (3.13) will be denoted by ci and di    , respectively.  Finally, the number of terms in the 

sum of (3.12) will be denoted by n1|1 
= n + 1, while the number of elements in the sums of (3.14) will be marked 

by n1|1 1|1 
ei = n. Although at this stage all the counters nei are the same, as will be seen in the sequel, they may be 

different for different i-s. Therefore we have introduced i-dependent element counters n1|1
. Moreover, although the 

counters n1|1 
and n1|1 

seem to be related to each other (the former is n + 1 while the latter are n), they will exhibit t ei 
irregular changes and thus were introduced separately. 

With these notations and renumbered parameters and vectors, φ̄ 
 
ν
  

is restated as 
 
 

 
(3.16) 

n1|1 

φ̄ ν     =     g1|1   y1|1
(ν)  exp  y1|1

(ν)  , 
 
 
where 

X1 |Z1 i gi ei 
i=1 

(3.17) g1|1   y1|1
(ν)  = 

1
 
  1 

jc1|1 + d1|1 + y1|1(ν) 
 
jc1|1 d1|1 + y1|1(ν) 

−1
 
 

 
 

and i gi 2

π i 
 
 

1|1 
ei 



n 

i gi − 
 
 
 

1|1 
ei 

i −  i
 gi 

(3.18) y1|1
(ν) =     q1|1

sgn  (a1|1, ν)  ,  y1|1
(ν) = −    p1|1|(a1|1, ν)| + j(b1|1, ν). 

gi i i ei 
 =1 

i i i 
 =1 



φ p i i 1 

1 

1  
X1 |Z1 

t 

X1 |Z1 

t 

n 
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It is interesting to note that the initial characteristic function in (2.3) is also expressed in a form identical to that 
given in (3.16). The initial parameters are: n1 = 1; g1 = 1 (and thus there are no y1 arguments); n1 = n; the 

t 1 g1 e 
parameters p1 and the vectors a1 and b1 are given in (2.4). 

i i  1 
3.1.1. Special Case:  Ha1 = 0. If one or more of the Ha1-s are zero, i.e., one or more of the entries of 

i i 1 1 

the matrix H are zero, then the corresponding e−pi |(ai ,ν)| terms would come out of the integral in (3.8). However, 
the other manipulations used to solve this integral would remain the same.  For the sake of simplicity, this is 
demonstrated by assuming that only Ha1 = 0, while Ha1 /= 0 for i = 2, . . . , n. In this case, (3.8) and (3.10) are 

restated as 
1 

 

 
p1   a1 ,ν)|+j(b1 ,ν)   ∞ 

i 
 
f( n \ l 

(3.19) ¯ 
X1 |Z1 

 
ν
  
=  

e−  1 |(  1 

2π 

1 

exp 

−∞ 

   
1

 
− i |( 

i=2 
a1, ν) − Ha1η| — γ|η| + j z1 − Hb1   η  dη 

1 1 1 ∞ ( n+1 \ 
e−p1 |(a1 ,ν)|+j(b1 ,ν) 

= 
2π 

−∞ 

exp 
  

− 
i=2 

ρi |(µi, ν) − η| + jζ1η dη, 

where the parameters ρi, µi, i = 2, . . . , n, and ζ1 were defined in (3.11). The integral in the above is solved using 
the same technique as in the case when the condition in (3.9) holds, yielding the result 

 
 (3.20) φ̄ ν     = e−p1 1 

n+1   
g1|1 (y (ν)) exp (y (ν)) , 

X1 |Z1 1 |(a1 ,ν)| 
i gi ei 

i=2 

where g1|1
(·) are given in (3.13). The arguments of g1|1

(·) and the exponents in the sum of (3.20) are 
i i 

n+1 n 
(3.21a) ygi(ν) =     ρ sgn ((ai , ν)) =     q1|1

sgn  (a1|1, ν) , 
 

 =2 
 /=i 

n+1 

i i  
 =2 

 
n 

(3.21b) yei(ν) = −     ρ |(ai , ν)| + j(b1|1, ν) = −    p1|1  (a1|1, ν) + j(b1|1, ν), 
 

 =2 
 /=i 

i i i i 
 =2 

with vectors ai   and bi defined in (3.15). When ordering the elements sequentially, thus avoiding the £ /= i 
exclusions in the sums of (3.21), we obtain the parameters q1|1

, p1|1
, and vectors a1|1 

and b1|1
. 

i i  i i 
The result in (3.20) can be cast in the form of  (3.16) by the following modifications.   First, the exponent 

1 1 

e−p1 |(a1 ,ν)| outside of the sum is combined with the exponents in the sum by modifying the argument yei(ν), i.e., 
1|1 

  1|1 1|1 
adding one more element in the sum of (3.21b).  This element is denoted by −p1  

 (a1   , ν)  with  p1     =  p1  and 
1 

a1|1 

1     = a1 for all £. Consequently, the sum that defines the argument to the exponents will have n elements. Second, 

for consistency, the sum of (3.21a) is expanded by one by introducing q1|1 
= 0 for all £.  Finally, the terms in the 

sum of (3.20) are ordered sequentially, starting from one. As a result, φ̄ 
 
ν
  

for this special case is expressed 

in a form identical to that of (3.16) when condition (3.9) holds, with the only difference being that n1|1 
is reduced 

by one to n1|1 
= n. The manipulations above can be extended to the cases where more than one Ha1 is zero, hence 

t 
further reducing the number of terms used to express φ̄ 

i 
 
ν .

 

3.2. Time Propagation to k = 2. Given the time propagation equation x2 = Φx1 +Γw1 we want to compute 
the characteristic function of the ucpdf of x2 given z1. Using the results of Appendix C, (C.4), that characteristic 
function is given by 

 
 
(3.22) 

 
φ̄ ν     = 
φ̄ 

 
n1|1  

ΦT ν  φW  ΓT ν  =     g1|1   y1|1
(ΦT ν)  exp  y1|1

(ΦT ν)  e−β|(Γ,ν)| 

X2 |Z1 X1 |Z1 i gi ei 
i=1 

1|1 
t 

=     g1|1   y1|1 1|1 

i 
i=1 

gi (Φ
T ν) exp yei (Φ

T ν) − β|(Γ, ν)| . 

The last expression in (3.22) can be expressed in a form that is similar to the one given in (3.16).  For that, we 
make the following observations that lead to the definitions of new and time propagated parameters and vectors. 



i 

y1|1 

n n n 

y1|1 

n n 

in 2|1 in 2|1 
2|1 

in 

y2|1 

n 

i  
2|1 

n 

t 

   − 

a i  

q a q q a 

p p 
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1. φ̄ 
 
ν
  

is expressed with the same number of terms as φ̄ 
 
ν
 
.  Hence, we define n2|1  

= n1|1. 
X2 |Z1 X1 |Z1 t t 

2. The coefficient functions g1|1
(·), or specifically the parameters c1|1

 and d1|1
, remain as in (3.17), i.e., 

c2|1 1|1 2|1 i 
1|1 2|1 i i 

1|1 
i = ci   , di = di   , i ∈ [1, . . . , nt   ]. There are only changes in the arguments of gi    (·). For notational 

consistency we will denote the updated coefficient functions g2|1
(·) while remembering that 

 

(3.23) g2|1
(·) = g1|1

(·). 
i i 

 

3. The parameters q1|1 
and p1|1 

used to define y1|1
(·) and y1|1

(·) in (3.18) are also unchanged, i.e., p2|1 
= p1|1

, 
i i  1 

gi ei 
1|1 i i  

qi     = qi   ,  i ∈ [1, . . . , nt   ], £ ∈ [1, . . . , nei ]. 
4. The arguments of y1|1

(·) and y1|1
(·) are multiplied by ΦT , hence affecting the vectors a1|1  

and b1|1  
as 

gi ei i i 
 
 

 
(3.24a) 

 
gi (Φ

T ν) = 

1|1 ei   
 
 =1 

 
1|1 
i  

 

 
sgn 

 
1|1 

( i  , ΦT ν) 
1|1 
ei 

= 
  

 =1 

 
1|1 
i  

 

 
sgn (Φa 

 
1|1 
i  

, ν) 
1|1 
ei 

= 
  

 =1 

 
2|1 
i  

 

 
sgn 

 
2|1 

( i  , ν)  , 

 
(3.24b) ei  (Φ

T ν) = − 
1|1 ei   

 
 =1 

 
1|1 
i  

|(Φa 
 

1|1 
i  

, ν)| + j(Φb 
 

1|1 
i 

, ν) = − 
1|1 ei   

 
 =1 

 
2|1 
i  

|(a 
 

2|1 
i  

, ν)| + j(b 
 

2|1 
i 

, ν). 

 

Here we used the definitions a2|1 
= Φa1|1

, b2|1 
= Φb1|1

, i ∈ [1, . . . , n2|1
], £ ∈ [1, . . . , n1|1

]. 
i i i i t ei 

5. The exponents are a function of an additional element −β|(Γ, ν)|. Hence, the number of elements that define 
the new argument y2|1

(·) increase by one, i.e., n2|1 
= n1|1 

+ 1. The parameters and vectors that define these 
ei ei ei 

new elements are p2|1
 

ei 
= β, a2|1

 
ei 

= Γ, i ∈ 1, . . . , nt   ]. For consistency, and to facilitate the subsequent 

manipulations of the characteristic function, the number of elements in the sum of the new arguments 
y2|1 2|1 2|1 

gi  (·) are also increased by one, while introducing the zero parameters q  2|1  = 0, i ∈ [1, . . . , nt   ]. Hence, 
ei 

with these new elements, the arguments y2|1
(·) and y2|1

(·) are defined as 
gi ei 

 
 

 
(3.25a) 

 
gi (ν) = 

 

 
y2|1 

2|1 ei   

 =1 

1|1 

q2|1
sgn (ai   , ν) 

 
 
 
 
 
 
 

2|1 ei   

 

 
 
 
 
 

2|1 

 

 
 
 
 
 

2|1 

 

 
 
 
 
 

2|1 

(3.25b) ei (ν) = yei (ΦT ν) − β|(Γ, ν)| = − 
 =1 

pi  |(ai  , ν)| + j(bi , ν). 
 

Using all the time propagated and newly defined parameters, (3.22) is restated as 
 
 

 
(3.26) 

n2|1 

φ̄ ν     =     g2|1   y2|1
(ν)  exp  y2|1

(ν)  , 
X2 |Z1 i gi ei 

i=1 
 

where 

(3.27) g2|1   y2|1
(ν)  = 

1
 

 
   1 

jc2|1 + d2|1 + y2|1(ν) 

 

  
jc2|1 

 
d2|1 + y2|1(ν) 

−1
 
 

i gi 2π i i gi — i −  i gi 

 

with arguments y2|1
(·) and y2|1

(·) given in (3.25). Overall, we have obtained a form which is similar to the one in 
gi ei 

(3.16), determined after the first measurement update in the previous subsection. 
Remark 3.1. It may so happen that for a given i several vectors a2|1 with £ ⊂ [1, . . . , n2|1

] could be co-aligned. 
i ei 

For example, if there are two such vectors a2|1  and a2|1, £ /= £̄, they are related by a non-zero constant θ , i.e., 
2|1 
i ̄  

= θ a2|1, which implies that 
i i ̄  

 
(3.28a) sgn  (a2|1, ν) = sgn (θ ) sgn  (a2|1, ν)

 
 

i ̄  
2|1 

i  
2|1 

(3.28b) |(ai ̄   , ν)| = |θ | · |(ai     , ν)|. 



q2|1 2|1 
i  

2|1 
i  

2|1 

ei 

i  

ei 

X2 |Y2 

φ φ − φ 

t 

n 

n 

i  

Ha2|1 

q2|1 2|1 
i  

n 

ei 

T 
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Consequently, in the sums of  (3.25) such two terms can be combined as 

(3.29a) i  sgn (ai   , ν) + q2|1sgn (ai ̄  , ν) = q̄2|1sgn (ai   , ν) 
p2|1 2|1 2|1 2|1 2|1 2|1 

(3.29b) 

with 
i  |(ai   , ν)| + pi ̄  |(ai ̄  , ν)| = p̄i  |(ai   , ν)| 

q̄2|1 2|1 2|1 
(3.30a) 

i    = qi     + sgn (θ ) qi ̄  
p̄2|1 2|1 2|1 

(3.30b) 
i   = pi     + |θ |pi ̄  , 

thus reducing n2|1, the number of elements in the sums of (3.25), by one. If there are more than two co-aligned 
vectors a2|1, or if there are several groups of such co-aligned vectors, the above procedure can be repeated for all 
those occurrences thus further reducing n2|1. 

In the sequel we will assume that all co-aligned vectors were combined. This minimizes the number of elements 
needed in (3.25) and contributes to the efficiency of the resulting estimator. 

3.3. Measurement Update at k = 2. In this subsection we perform a second scalar measurement update at 

k = 2 using the second measurement z2 = Hx2 + v2. Specifically, we will compute φ̄ 
 
ν
 
, where y2  = 

 
z1 z2

 
. 

Using the general convolution results of (A.7) in Appendix A, 

 ∞  ∞ 

(3.31) ¯ 
X2 |Y2 

 
ν
  
=   

1 
2π 

−∞ 

¯ 
X2 |Z1 

 
ν − HT η

  
φV 

    
η
  

ejz2 η dη =   
1
 

2π 
−∞ 

¯ 
X2 |Z1 

 
ν − HT η

  
exp 

 
−γ|η| + jz2η

  
dη, 

where from (3.26) 
 

 
(3.32) φ̄ 

 
 

n2|1  
ν − HT η  =     g2|1    y2|1   ν − HT η    exp  y2|1   ν − HT η    , 

 
g2|1 

X2 |Z1 i gi ei 
i=1 

i (·) is given in (3.27), and from (3.25) 
 
 
 

2|1 
ei 

(3.33a) y2|1   ν − HT η  =     q2|1
sgn  (a2|1, ν − HT η)  , 

gi i i  
 =1 

 
(3.33b) 

2|1 
ei 

y2|1  ν − HT η  = −    p2|1|(a2|1, ν − HT η)| + j(b2|1, ν − HT η). 
ei i i i 

 =1 

The integral in (3.31) is solved using the methodology presented in Appendix B.2.  For that, the coefficients 
of η in the absolute value and sign terms in (3.31), or more specifically in (3.33), has to be normalized to one, 

assuming those coefficients are not zero.  Hence, we first assume that Ha2|1  /= 0,  ∀   i, £. The case that several 

i  = 0 will be addressed at the end of this section. Next, we perform the following manipulation and introduce 
the intermediate variables 

2|1 T 2|1 2|1 2|1 
(3.34a) (ai   , ν − H η) = (ai    , ν) − Hai    η = Hai     ((µi  , ν) − η) , 
(3.34b) i  sgn (ai   , ν − H  η) = Q2|1

sgn ((µi , ν) − η) , 
p2|1 2|1 T 2|1 

(3.34c) 

where 
i  |(ai   , ν − H η)| = ρi  |(µi , ν) − η|, 

(3.35) µi   = a2|1
/  

Ha2|1    , Q2|1 
= q2|1

sgn  Ha2|1   , ρ2|1 
= p2|1|Ha2|1|. 

i i  i i  i i  i i  

Using these variables, (3.33) is restated as 
 
 
 
 

2|1 
ei 

(3.36a) y2|1   ν − HT η  =     Q2|1
sgn ((µi , ν) − η) , 

gi i  
 =1 

 
(3.36b) 

n2|1 

y2|1  ν − HT η  = −    ρ2|1|(µi , ν) − η| + j (b2|1, ν) − Hb2|1η  . 
ei i i i 

 =1 



∞ n   
n
 

n 

φ 
t 

i 
g 

ei 

i  

ei 

i  

i 

n n2|1 ei ei 

i  ,ν) 

im 

2|1     

y2|2 

y2|2 

n2|1 

n2|1 

i  

i  

ei 

ei 

i  

i  

 
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Substituting (3.32) and (3.36) into (3.31) yields 

 
 
(3.37)  φ̄  

ν
  
=   

1 
2|1 
t   

g2|1 

2|1 ei   
Q2| 1sgn ((µ 

 
, ν) − η) 

X2 |Y2 
2π i i=1 

−∞ 

 
 =1 

 

i i  
 

 
2|1 
ei 

× exp −    ρ2|1|(µi , ν) − η| + j (b2|1, ν) − Hb2|1η   exp −γ|η| + jz2η dη. 
i i i 

 =1 
 
Combining the exponents, while interchanging the integral with the summation, (3.37) is restated as 

 
 
 
(3.38) 

 
¯ 

X2 |Y2 

n2|1 

 
ν  =     

e 
i=1 

j(b2|1 ,ν)   ∞ 

2π 
−∞ 

 
2|1 
i 


n2|1 +1 
  

 
 =1 

Q2|1
sgn ((µi  

 

, ν) − η) 

 

exp − 
n2|1 +1 
  

 
 =1 

ρ2|1|(µi  

 

, ν) − η| + jζiη 

 
 
dη. 

 
In the above we defined the new parameters 

 
(3.39) ρ2|1 

= γ, µi  = {0}n, ζi = z2 − Hb2|1, £ = n2|1 
+ 1. 

i i ei 
 

In addition, for consistency, the number of the elements in the argument of the functions g2|1
(·) was increased by 

one by introducing Q2|1 
= 0, £ = n2|1 

+ 1. 
i ei 

Each integral in (3.38) has the form of the general integral in (B.11), when associating ξ  and z with (µi , ν) 
and ζi, respectively. Their solution was derived in (B.15) of Appendix B and is given by 

 
 

2|1 
t 

 
ei +1 


n2|1 +1 n2|1 +1 

 
(3.40)  φ̄  

ν
  
= 
  

ej(b2|1 g2|2  Q2|1
sgn ( µ µ , ν ) , ρ2|1

sgn ( µ µ , ν )
 

X2 |Y2  
i=1 

 
m=1 

im  i  
 =1 
 /=m 

( i  −  im ) i  
 =1 
 /=m 

( i  −  im )  

   
n2|1 

 
2|1  n2|1 

× exp 
− 

ei +1   nt 

ρ2|1 |(µi  − µim, ν)| + jζi(µim, ν) 
= 
 

 
ei +1   

g2|2    y2|2 (ν), y2|2
 (ν)  exp  y2|2 

(ν)  .  i  
 =1 

 /=m 

 
i=1 

im 
m=1 

gim1 gim2 eim 

 

The coefficient functions g2|2 
(·, ·) that have two arguments are given by 

 
 

g2|1     y2|2 (ν) + Q2|1
 

 g2|1    y2|2 
  

(ν) − Q 
(3.41) g2|2  y2|2

 (ν), y2|2
 (ν)  = 

1 i
 gim1 im  i gim1 im . 

im gim1 gim2 2π 
 

jζ + ρ2|1 2|2 − 2|1 2|2 
 

i im + ygim2(ν) jζi − ρim + ygim2(ν) 
 
The arguments of these coefficient functions and those of the exponents in (3.44) are given by 

 
 

 
(3.42a) 

 
 
 
(3.42b) 

 
gim1(ν) = 

 

 
 

gim2(ν) = 

ei +1 
  

 
 =1 
 /=m 

ei +1 
  

 
 =1 
 /=m 

n2|1 

Q2|1
sgn ((µi  − µim, ν)) = 

 
 
ρ2|1

sgn ((µi   − µim, ν)) = 

n2|1 +1 
  

 
 =1 
 /=m 

n2|1 +1 
  

 
 =1 
 /=m 

Q2|1
sgn ((aim , ν)) , 

 
 
ρ2|1

sgn ((aim  , ν)) , 

 
2|1 

y2|2 ei +1   2|1 2|1 
nei +1   2|1 

(3.42c) eim(ν) = −  
 
 =1 
 
/=m 

ρi    |(µi  − µim, ν)| + j(ζiµim + bi   , ν) = −  
 
 =1 
 
/=m 

ρi    |(aim , ν)| + j(bim, ν), 



2|1 

a 
ei 

 a 
Ha 

2|1 

i Ha 

n 

t ei 

i  

t 

r r 

i 

y2|2 

n 

i 1 
2|2 

gi2 

n 

i 2 
2|2 

n 

im 

t 

+ 1 

T 
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where, while using (3.35) and (3.39), for £ /= m we have defined 
 

2|1 2|1   a  i     aim  m /= n 2|1  2|1 − 2|1 ei  + 1, £ /= nei  + 1 
 Hai   Haim 

(3.43a) 
 

aim  = µi  − µim = 
2|1 
i  
2|1 m = n2|1 

+ 1 
 Hai   
− 
 

2|1 
im 

2|1 
im 

 
 
 

2|1 

£ = n 2|1 
ei 

  z2 − Hb2|1       aim + b2|1 m /= n + 1 
(3.43b) bim = ζiµim + b2|1 

= b2|1 
i 2|1 i 

im 
ei 
2|1 

i m = nei  + 1 

To avoid the double-summing over i and m in (3.40), all the (·)im terms are now re-ordered sequentially with 
2|1 
t 

one index i. Its range, or the number of terms in this single sum will be n2|2 
= 

), 
(n2|1 

+ 1). In this reordering, 
i=1 

one has to keep track which parent g2|1
(·) is used to compute the updated g2|2

(·).  This will be done by storing 
i i 

the parent-term index in the variable r2|2
.  In addition, the offsets ±Q2|1  

used to compute g2|2
(·) in (3.41) will 

i im i 
be denoted by h2|2

. The imaginary parameter ζi and the real parameter ρ2|1 
in the denominator of (3.41), when 

i im 
re-ordered sequentially, will be denoted by c2|2 

and d2|2
, respectively. The re-ordered arguments y2|2

 (ν), y2|2
 (ν), 

i i gim1 gim2 
and y2|2 

(ν) will be denoted by y2|2 
(ν), y2|2 

(ν), and y2|2
(ν), respectively. These arguments are defined in (3.42) by 

eim gi1 gi2 ei 
sums that have the £ /= m exclusion. To avoid that, the parameters in these sums will be re-ordered sequentially, 
while accounting also for the sequential (i, m) ordering discussed above. The number of terms in those sums will be 

denoted by n2|2
. The re-ordered vectors aim   and b2|1 

will be denoted by a2|2 
and b2|2

, respectively. The re-ordered ei i i i 
parameters Q2|1  

of (3.42a) and ρ2|1  
of (3.42b) will be denoted by q2|2  

and q2|2
, respectively, while ρ2|1  

of (3.42c) 
i i  

will be marked by p2|2
. 

i 1 i 2 i  

With these substitutions, (3.40), (3.41) and (3.42) are restated as 
 
 

 
(3.44) 

n2|2 

φ̄ ν     =     g2|2   y2|2 
(ν), y2|2 

(ν)  exp  y2|2
(ν)  , 

X2 |Y2 i 
i=1 

gi1 gi2 ei 

 
 

g2|1    y2|2 (ν) + h2|2
  g2|1      y2|2 (ν) − h2|2    

 
(3.45) g2|2   y2|2 

(ν), y2|2 
(ν)  = 

1  2|2 
i 

gi1 

+ d 

i 2|2 
i + y (ν) 

− 
jc 

gi1 — d 
i 

 , 
+ y (ν) 

i gi1 gi2 
2π  jc2|2 2|2 

i 
2|2 
gi2 

2|2 
i 

2|2 
i 

2|2  
gi2 

 
and 

 
 
(3.46a) 

 
 

gi1(ν) = 

 
2|2 ei   

 
 =1 

 
q2|2

sgn 

 
(ai   , ν) 

 
,  y2|2 

(ν) = 

 
2|2 ei   

 
 =1 

 
q2|2

sgn 

 
(ai    , ν)  , 

y2|2 
2|2 ei   2|2 

  
 

2|2 
 

2|2 
(3.46b) ei (ν) = − pi  

 (ai   , ν)  + j(bi    , ν). 
 =1 

 

Note that the coefficient functions g2|2 
(·, ·) have two arguments.  It is grouped into one vector argument with 

two components denoted by y2|2
(ν) = 

r
y2|2 

(ν)  y2|2 
(ν)

l
 . It is defined by combining the two equations of (3.46a) 

gi gi1 gi2 T 
while using a two dimensional vector of parameters q2|2 

= 
r
q2|2

 q2|2
l
 . With these definitions, (3.44) and (3.45) 

are restated as 
i i 1 i 2 

 
 
(3.47) 

 
n2|2 

φ̄ ν     =     g2|2   y2|2
(ν)  exp  y2|2

(ν)  , 
X2 |Y2 i gi ei 

i=1 



r r 

n n 

r 

r 

r r 

i 

r 2|2 r 2|2 

r2|2 

i  

ei 

i  

n2|2 

X2 |Y2 t 

r r 

r 
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 
g2|1    y2|2 (ν) + h2|2

  g2|1      y2|2 (ν) − h2|2    
 

(3.48) g2|2   y2|2
(ν)  = 

1  2|2 
i 

gi1 i 2|2 
i 

gi1 i  , i gi 2π  jc2|2 2|2 2|2 − 2|2 2|2 2|2  
i + di + ygi2(ν) jci − di + ygi2(ν) 

 
where y2|2

(·), t = 1, 2, denotes the t-th element of the vector y2|2
(·). Similarly, (3.46) are restated as 

git gi 
 

2|2 
ei 

2|2 
ei 

(3.49) y2|2
(ν) =     q2|2

sgn  (a2|2, ν)  ∈ R2,  y2|2
(ν) = −    p2|2|(a2|2, ν)| + j(b2|2, ν). 

gi i i  
 =1 

ei i i i 
 =1 

 

Remark 3.2.  Note that the coefficient functions g2|2
(·) and thus their parent functions g2|1 

(·) are computed 
i 2|2 

i 
using the updated arguments y2|2

(ν) of  (3.49).  Hence, especially when evaluating the parent g2|1 
(·), one does not 

gi 2|2 
i 

use the old arguments y2|1
(ν) of  (3.25), but rather the updated ones of  (3.49) with the offsets h2|2. 

gi 
Remark 3.3. Due to (3.23) one could restate (3.48) as 

 
g1|1    y2|2 (ν) + h2|2

  

i 
 
 

g1|1      y2|2 (ν) − h2|2    
 

(3.50) g2|2   y2|2
(ν)  = 

1  2|2 
i 

gi1 

+ d 

i 2|2 
i + y (ν) 

− 
jc 

gi1 — d 
i 

 , 
+ y (ν) 

i gi 
2π  jc2|2 2|2 

i 
2|2 
gi2 

2|2 
i 

2|2 
i 

2|2  
gi2 

 
which implies that one would have to store only the parameters c1|1

 
i 

and d1|1
 

i 
of the measurement updated coefficient 

function g1|1 
(·) and not the time propagated ones (which are in fact the same.) 

i 

Remark 3.4. Similar to the discussion presented in Remark 3.1, for a given index i, several vectors a2|2 with 
2|2 2|2 

£ ⊂ [1, . . . , nei  ] could be co-aligned. In such cases, in the sums of  (3.49) the elements with co-aligned ai    -s can be 
combined using the steps presented in Remark 3.1, thus reducing the number of elements in those sums, i.e., reducing 

ei . For numerical efficiency, we assume that all those co-aligned directions are combined, hence minimizing the 
number of elements n2|2 in the sums of (3.49). 

Remark 3.5. The procedure for handling the special case when one or more of the Ha2|1-s are zero is similar 
to what was presented in subsection 3.1.1. The details are not presented here for brevity. 

In summary, the measurement updated φ̄ 
 
ν
  

of (3.44) is expressed by n2|2  
terms.  The coefficient functions 

g2|2 2|2 2|2 2|2 2|2 

i  (·) are defined in (3.50) by the set of parameters ci and di   , the offsets hi   , and the index ri of the parent- 
term.  Alternatively, the index r2|2 

can be replaced by storing the parameters that define g1|1 
(·), i.e., c1|1

 and 
i 2|2 

i 
2|2 
i 

d1|1 
. The two dimensional vector input arguments of g2|2

(·) and the scalar arguments of the exponentials in (3.44) 
2|2 i 
i 

are determined by (3.49) while using the measurement updated vectors a2|2 
and b2|2

, together with the vector 

parameters q2|2 
and scalar parameters p2|2

. 
i i 

i i  

3.4. Summary of Initial Results. The above derivations demonstrate that the characteristic function of the 
ucpdf of the state xk at time steps k = 1 and 2 is expressed as a sum of nt weighted exponential terms. The number 
of terms increases during a measurement update and are unchanged during a time propagation step. In each such 
term i, the exponents and their weights or coefficients are functions of a sum of nei elements. The number nei of 
elements normally increases during the time propagation step and are unchanged during a measurement update. 
(In special cases, the number of elements may be reduced - see Remarks 3.1 and 3.4.) Moreover, it is observed that 
the scalar coefficients of the exponents are functions of a vector of parameters. The dimension of these vectors are 
unchanged during the time propagation step, and increase by one each time that a new measurement is processed. 
Those observations provide the insight and guidance on how to construct the characteristic functions at any time 
step k, as is discussed next. 

4. Time Propagation and Measurement Update: General Case. The initial results presented in the 
previous section suggest the general form of the characteristic function of the ucpdf of the state at any time step 
k given past measurements up to time k − 1 and k.  Specifically, based on the measurement updated characteristic 
functions obtained in (3.16) and (3.44) for k = 1 and 2, respectively, we assume now that at any time step 

the characteristic function of the ucpdf of the state xk  given all the data history up to that time, i.e., yk  = 



n 

r r 

n n 

gi2 

i 

as g0|0 

Xk |Yk 

Xk+1 |Yk 

t 

n 

i 

n 

n 

t 

n 

 
 

z1 z2 · · · zk    , is expressed as 
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k|k 
t 

(4.1) φ̄ ν     =     gk|k   yk|k 
(ν)  exp  yk|k 

(ν)  , 

where 

Xk |Yk i gi ei 
i=1 

 
gk−1|k−1   yk|k (ν) + hk|k 

  gk−1|k−1     yk|k (ν) − hk|k    
 

(4.2) gk|k   yk|k 
(ν)   =  

1   k|k 
i 

gi1 i k|k 
i − 

gi1 i 
 ,  

i gi 2π  jck|k 
+ d + y (ν) jc − dk|k + yk|k (ν) 

i i gi2 i i gi2 
 

and 
 
 
 
 

k|k 
ei 

 
 
 
 

k|k 
ei 

(4.3) yk|k 
(ν) =      qk|k 

sgn  (ak|k , ν)  ∈ Rk ,  yk|k 
(ν) = −     pk|k |(ak|k , ν)| + j(bk|k , ν). 

gi i i  
 =1 

ei i i i 
 =1 

Here, yk|k 
(·) and qk|k  

are k dimensional vectors.  When evaluating gk|k    yk|k 
(·)   in (4.2), the argument yk|k 

(·) is 
gi i  i gi gi 

partitioned as follows:  yk|k 
(·) is a k − 1 dimensional vector constructed from the first k − 1 components of yk|k 

(·), 
gi1 

while the scalar yk|k 
(·) is the last component of y 

k|k 
gi 

gi 

(·).  Based on the results in subsection 3.1, at k = 1 the 

numerators in (4.2) are one. Alternatively, the form of (4.2) can be maintained also for k = 1 by initializing gk|k 
(·) 

i  (ν) = 1. 
Now we will perform one time propagation and one measurement update and show that the above form is 

maintained at any time step. Although the derivations are similar to those presented in the previous section, a full 
derivation is presented here for clarity. 

4.1. Time Propagation from k to k + 1. Starting with the characteristic function φ̄ 
 
ν
  

of  (4.1) we 

want to compute φ̄ 
 
ν
  

while accounting for the time propagation equation xk+1  = Φxk  + Γwk . The result 
in (C.4) of Appendix C indicates that the desired characteristic function is given by 

 
(4.4) φ̄ 

  ν  = φ̄ 

 
  ΦT ν  φ 

 
 ΓT ν 

 
nk|k =      gk|k   yk|k 

(ΦT ν)  exp  yk|k 
(ΦT ν)  e−β|(Γ,ν)| 

Xk+1 |Yk Xk |Yk W
  

i gi
 ei i=1 

k|k 
t 

=      gk|k   yk|k k|k 

i 
i=1 

gi (ΦT ν) exp yei  (Φ
T ν) − β|(Γ, ν)| . 

The coefficient functions gk|k 
(·) are given in (4.2). Their arguments and those of the exponents in (4.4) can be 

redefined as follows 
 

yk+1|k 

 
 

k|k 

 
 
 

k|k 
ei   

 
 

k|k 

 
 

k|k 
(4.5a) gi (ν) = ygi  (Φ

T ν) = 
 
 
 =1 

qi  sgn (Φai  , ν) ∈ Rk , 

yk+1|k 
 

k|k 
k|k 
ei   

 
k|k 

 
k|k 

 
k|k 

(4.5b) ei (ν) = yei (ΦT ν) − β|(Γ, ν)| = −  
 
 =1 

pi  |(Φai  , ν)| − β|(Γ, ν)| + j(bi , ν). 

With these definitions, (4.4) can be restated as 
 
 
(4.6) 

 
nk|k 

φ̄ ν     =     gk|k   yk+1|k 
(ν)  exp  yk+1|k 

(ν)  , 
Xk+1 |Yk i gi ei 

i=1 

which clearly has a similar form as (4.1).  Specifically, defining the time propagated parameters similarly to the 

five-steps procedure outlined in section 3.2 including the new parameters rk+1|k 
= rk|k , hk+1|k 

= hk|k 
, the result 

above can be restated as 

 
(4.7) φ̄ 

 
  

ν  =
 

 
 
 
 

k+1|k 
t   

 
 
gk+1|k   yk+1|k 

i i i i 
 
 
 

k+1|k 
  

Xk+1 |Zk i 
i=1 

gi (ν) exp yei (ν)  , 



r r 
 

n n 

gi 

Xk+1 |Zk Xk |Zk 

Xk+1 |Zk 

φ φ 

φ 

n 

n 

n 

n 

r r 

2π jck+1|k+1 

i 

gi 

= 

i 
 

+ y d + y 
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where 

 
gk−1|k−1   yk+1|k (ν) + hk+1|k 

  gk−1|k−1      yk+1|k (ν) − hk+1|k     
 

(4.8) gk+1|k   yk+1|k  1 k+1|k  gi1 i k+1|k 
i 

gi1 i  
i gi (ν)  = 

2π k+1|k k+1|k k+1|k − k+1|k k+1|k k+1|k  
jci + di + ygi2 (ν) jci − di + ygi2 (ν) 

 
and 

 
(4.9) yk+1|k 

(ν) = 

 
 
 
 

k+1|k 
ei   

 

 
qk+1|k 

sgn   (ak+1|k , ν)   ∈ Rk ,   yk+1|k 
(ν) = − 

 
 
 
 

k+1|k 
ei   

 
 
pk+1|k |(ak+1|k , ν)| + j(bk+1|k , ν). 

gi i i  
 =1 

ei i i i 
 =1 

The vector yk+1|k 
(·) is partitioned into two parts used to evaluate (4.8): yk|k 

(·) is constructed from the first k − 1 
gi 

components of yk|k 
(·), while the scalar y k 

gi2 (·) is the last component of y 
gi1 k|k 
(·). 

The number of terms that define φ̄ 
 
·
  

in (4.7) is identical to that of φ̄ 
 
·
  

in (4.1).  However,  the 
number of elements needed to define the arguments of those terms has increased by one, i.e., nk+1|k 

= nk|k 
+ 1. It 

ei ei 
may happen that for a given i, several vectors ak+1|k  

with £ ⊂ [1, . . . , nk+1|k 
] in (4.9) could be co-aligned. In such 

i ei 
cases, the associated elements in the sums of (4.9) could be combined, thus reducing the number of elements in 
those sums, as discussed in Remark 3.1. 

4.2. Measurement Update at k + 1. After performing the general time propagation step in the previous 
subsection, thus attaining the characteristic function φ̄ 
surement update zk+1 = Hxk+1 + vk+1 to determine φ̄ 

 
·
  

of  (4.7),  the  next  step  is  to  use  the  next  mea-  
· , where yk+1 =  z1 z2 · · · zk+1   .  Using the 

general convolution results of (A.7) in Appendix A, 

 ∞ 

Xk+1 |Yk+1 

(4.10) 
¯ 
Xk+1 |Yk+1 

 
ν
  
=   

1 
2π 

−∞ 

1   
∞ 

¯ 
Xk+1 |Yk 

 
ν − HT η

  
φV 

 
−η

  
ejzk+1 η dη 

 

 
 
 
where from (4.7) 

¯ 

2π Xk+1 |Yk 

−∞ 

 
ν − HT η

  
exp 

 
−γ|η| + jzk+1η

  
dη, 

 
 

 
(4.11) φ̄ ν   − HT η  

= 

k+1|k 
t   

gk+1|k    yk+1|k   ν − HT η    exp   yk+1|k   ν − HT η    , 

 

 
gk+1|k 

Xk+1 |Yk i gi ei 
i=1 

i (·) is given in (4.8), and 

 
yk+1|k   ν − HT η  = 

 
 
 
 

k+1|k 
ei   

 
 
qk+1|k 

 
 
 

k+1|k T k 
(4.12a) gi 

 
 
 =1 

i sgn (ai , ν − H  η) ∈ R  , 

yk+1|k   ν − HT η  = − 
k+1|k 
ei   pk+1|k 

 
k+1|k T 

 
k+1|k T 

(4.12b) ei 
 
 
 =1 

i |(ai , ν − H η)| + j(bi , ν − H η). 

The integral in (4.10) is solved using the methodology presented in Appendix B.2 in precisely the same way 
that (3.31) was solved in section 3.3 while replacing 2|1 by k + 1|k and 2|2 by k + 1|k + 1. The equivalent forms to 

(3.47), (3.48) and (3.49) are 
 
 

 (4.13) 
 
φ̄ ν     
= 

k+1|k+1 
t   gk+1|k+1   yk+1|k+1 

 
k+1|k+1 

 

 
 
(4.14) 

Xk+1 |Yk+1 i 
i=1 

gi (ν) exp yei (ν)  , 

 
gk|k 

 
yk+1|k+1(ν) + hk+1|k+1

  gk|k 
 

yk+1|k+1(ν) − hk+1|k+1
   

gk+1|k+1   yk+1|k+1  1 k+1|k+1  gi1   
i 

k+1|k+1 
i 

gi1 i  
i gi (ν) = 

i + d 
k+1|k+1 
i 

k+1|k+1 
gi2 (ν) 

− 
jc k+1|k+1 

i 

k+1|k+1 
— i 

k+1|k+1 
gi2 

, 
(ν) 


 



gi (ν) = 

n 

i  a , ν 

n 

ei 

Xk |Yk 

Xk |Yk 

X1 |Y1 

φ 

X1 |Z1 

∂φ 

X1 |Z1 

X1 |Z1 

∂φ 

R , 

∞ 

T 

− 
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(4.15a) yk+1|k+1 

 

 
 
 
 
 
 

k+1|k+1 
ei   

 
 =1 

 
 
 
qk+1|k+1sgn 

 
 
 
 

k+1|k+1 

( i ) 

 
 
 
 
 
 k+1 

∈ 

yk+1|k+1 
k+1|k+1 
ei   

 
k+1|k+1 

 
k+1|k+1 

 
k+1|k+1 

(4.15b) ei (ν) = −  
 
 =1 

pi |(ai , ν)| + j(bi , ν). 

As discussed earlier in this work, if for a given index i several vectors ak+1|k+1
, £ ⊂ [1, . . . , nk+1|k+1

] are co-aligned, 
i ei 

the associated elements in the sums of (4.15) could be combined, consequently reducing nk+1|k+1
, the number of 

elements in those sums. 

The above results clearly show that the form of the characteristic function proposed in (4.1-4.3) for the time 
step k is also maintained at k + 1. 

5. Conditional Mean and Estimation Error Variance. The minimum conditional variance estimator 
of xk given the measurement sequence yk = z1 z2 · · · zk is the conditional mean of xk given yk . It can be 
determined by evaluating the characteristic function of (4.1) and its derivatives at ν = {0}n, or as ν → {0}n. In this 

section we show that φ̄ 
 
·
  

is twice continuously differentiable and give explicit expressions for the conditional 
mean and the estimation error variance. 

5.1. Continuity of the First Two Derivatives of the Characteristic Function. The continuity of the 
first two derivatives of φ̄ 

 
·
  

is proven by induction.  First the case that hi /= 0, i = {1, . . . , n} is addressed. 
The case when hi = 0 for some i ⊂ {1, . . . , n} is addressed at the end of this subsection. 

5.1.1. Continuity of the First Two Derivatives of φ̄ . Assuming that hi /= 0 for i = {1, . . . , n}, the 
characteristic function for the ucpdf of initial state given the first measurement is given by the convolution integral 
in (3.10). Then, using the definitions in (2.4) and (3.11), (3.10) is rewritten as 

 

 
(5.1) 

 
¯ 

X1 |Z1 

 
ν̃
  
=   

1   
 
 

2π 
−∞ 

n 
n 

e−αi |ν̃i −η|e−γ|η|+jz1 η dη 
i=1 

where ν̃i = (µi, ν) and ν̃ = 
f
ν̃1 · · · ν̃n

l
 . The integrand of (5.1) is a continuous function of η and ν̃i∀i = 1, . . . , n. 

Moreover, its partial derivative with respect to any ν̃j , given by 
 
 
(5.2) 

 
∂ 

∂ν̃j 

( n 
n 

e−ρi |ν̃i −η|e−γ|η|+jz1 η 

i=1 

 
n 

= −ρj sgn (ν̃j − η) e−ρj |ν̃j −η| 
n 

e−ρi |ν̃i −η|e−γ|η|+jz1 η , 
i=1 i/=j 

 

is piecewise continuous, bounded, and integrable. Hence, when computing the partial derivative of φ̄ 
 
ν̃
  

with 

respect to ν̃j , the differentiation and integration operations can be reversed [2] to yield 
 

 
(5.3) 

¯ 
X1 |Z1 

 
ν̃
 
  1 
= − 

 ∞ 
ρ sgn (ν̃ 

n 

— η) e−ρj |ν̃j −η| 
n 

e−ρi |ν̃i −η|e−γ|η|+jz1 η dη 
∂ν̃j 2π j j 

−∞ i=1 i/=j 

Since the integrand in (5.3) is piecewise continuous and bounded functions of η and ν̃i∀i = 1, . . . , n, the first 

derivative ∂φ̄ 
 
ν̃
  
/∂ν̃ is continuous [2]. 

The second partial derivatives of φ̄ 
 
ν̃
  

is attained by differentiating (5.3).  To avoid the differentiation of the 

piecewise continuous function sgn (ν̃j − η), we introduce the change of variables ν̃j −η = σ ⇒ η = ν̃j −σ, dη = −dσ 
to restate (5.3) as 

(5.4) 

 
¯ 
X1 |Z1 

∂ν̃j 

 
ν̃
 
  1 
= 

2π 

 ∞ n 

ρj sgn (σ) e−ρj |σ| 
n 

e−ρi |ν̃i −ν̃j +σ|e−γ|ν̃j −σ|+jz1 (ν̃j −σ)dσ. 
i=1 

−∞ i/=j 

The integrand in (5.4) is a piecewise continuous in σ, continuous in ν̃i∀i = 1, . . . , n, and its first partial derivative with 

respect to ν̃i is piecewise continuous, bounded, and integrable. Consequently, in computing the partial derivative 



X1 |Z1 

X1 |Z1 

φ 

X2 |Y2 

φ ν  = φ 

X1 |Z1 X1 |Z1 

X2 |Z1 

Z 2   1
 
 

φ φ 

X1 |Z1 (ν) = φ 
X2 |Z2 

X2 |Y2 

X1 |Z1 

X2 |Y2 

∂φ     ∂φ T 

φ 

∂φ 
X2 |Y2 

T 

T 

T 

T 
T 

 1 

+ 
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of (5.4) with respect to ν̃ , the order of differentiation and integration can be interchanged as 

  
∂2φ̄  

ν̃
  1   

∞ 
∂ n

 
(5.5) X1 |Z1 = − ρ sgn (σ) e−ρj |σ| n 

e−ρi |ν̃i −ν̃j +σ|e−γ|ν̃j −σ|+jz1 (ν̃j −σ) dσ. 
∂ν̃ ∂ν̃j 2π j

 
−∞ 

∂ν̃    
i=1 i/=j 

 

The partial derivative and hence the integrand in (5.5) is a piecewise continuous and bounded function of the 
variables σ and ν̃i∀i = 1, . . . , n. Therefore, the integrals exist for all j and £ and are continuous with respect to all 

(ν̃j , ν̃ ) [2]. This implies that all the elements of the Hessian of φ̄ 
 
ν̃
  

are continuous for all ν̃. 

In summary, φ̄ 
 
ν̃
  

is twice continuously differentiable with respect to ν̃.  Since ν is a linear function of ν̃, 
¯ 

X1 |Z1 

 
ν
  

is twice continuously differentiable with respect to ν. 

5.1.2. Continuity of the First Two Derivatives of φ̄ . The time propagated characteristic function 

at k = 2, which was given in (3.22), is considered first. It is rewritten as 
 

(5.6) 
¯ 

X2 |Z1 

     
¯
 
X1 |Z1 

 
ΦT ν

  
e−β|ΓT ν|. 

Since, as it was shown above, φ̄ 
 
ν
  

is twice continuously differentiable, φ̄ 
 

ΦT ν
  

is also twice continuously 

differentiable for any transition matrix Φ. Clearly, φ̄ 
 
ν
  

is continuous, being a product of two continuous func- 

tions. However, since the first derivative of e−β|Γ ν| is not continuous at ν = {0}n, the associated pdf fX 2 |  1   x |z 
does not have any moments. This implies that we cannot compute a priori estimates of the state x2 given only the 
past measurement z1. 

The characteristic function at the second measurement update, given the measurement history y2 = {z1, z2}, 

was expressed in (3.31) and rewritten here using the explicit form of (5.6) as 

 ∞ 

(5.7) ¯ 
X2 |Y2 

 
ν
  
=   

1 
2π 

−∞ 

˜ 
X1 |Z1 (ν − HT η)e−β|Γ ν−HΓη|e−γ|η|+jz2 η dη, 

where we used the notation φ̃ ¯ 
X1 |Z1 

 
ΦT ν

 
.  Note that if HΓ = 0, the term e−β|ΓT ν|  would come out of 

the integral in (5.7). Consequently, in this case φ̄ 
 
ν
  

would not be continuously differentiable with respect to 
ν, and there would be no minimum variance estimate of xk given yk for all k ≥ 2. Therefore, HΓ /= 0 is a necessary 
condition for the continuous differentiability of φ̄ 

 
ν
  

and the existence of the desired estimate of the state xk 
at any time step k. 

From section 5.1.1, φ̃ (ν − HT η) is twice continuously differentiable with respect to ν.  Moreover, 

e−β|Γ ν−HΓη| is once piecewise continuously differentiable with respect to ν as 
 

 
(5.8) 

∂e−β|Γ ν−HΓη| 
= −βsgn  ΓT ν − HΓη  e−β|Γ ν−HΓη|ΓT . 

∂ν 

Therefore, when constructing the first derivative of φ̄ 

  
ν   with respect to ν, the order of differentiation and 

integration in can reversed to yield 
 
 
(5.9) 

¯ 
X2 |Y2 

∂ν 
 
ν
  

= 

∞ 
˜
 
X1 |Z1 

2π 
−∞ 

1 

(ν − HT η) 

∂ν 

 ∞ 

e−β|Γ   ν−HΓη|e−γ|η|+jz2 η dη 
 
 

T ˜ 

2π X1 |Z1 

−∞ 

(ν − HT η)  −βsgn  ΓT ν − HΓη  e−β|Γ ν−HΓη|ΓT      e−γ|η|+jz2 η dη. 

 

Since the integrands of (5.9) are piecewise continuous and bounded functions of η and νi, i = 1, . . . , n, 
¯ 

X2 |Y2 

 
ν
  
/∂ν is continuous. 

The second partial derivative of φ̄ 

ΓT ν 

 
ν
  

can be taken after making the following change of variables 

ΓT ν 
(5.10) 

HΓ 
− η = σ  ⇒ η = HΓ 

− σ, dη = −dσ. 



∂φ     ∂φ   − 

X2 |Y2 

    

X1 |Z1 

X2 |Y2 

Xk+1 |Yk+1 

Xk |Yk 

φ ν  = φ 

Xk+1 |Yk 

φ φ 

Xk |Yk (ν) = φ Xk+1 |Yk+1 

∂φ     ∂φ     

Xk+1 |Yk+1 

n 

φ 
φ X1 |Z1 

1 

T 

∞ 
T 

1 

αj 
∞ αj 
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Substituting (5.10) into (5.9) we obtain 

(5.11) 

 
¯ 

X2 |Y2 

∂ν 

 
 
ν
  

= 

∞ 
˜
 
X1 |Z1 

2π 
−∞ 

 
(P ν + HT 

σ) 

∂ν 

 
   

ΓT ν 

e−β|HΓσ|e−γ HΓ 

 
 

  σ +jz2   

 

 
   

ΓT ν 

HΓ −σ  dσ 

 ∞ 
ΓT     

ν 

   
ΓT ν 

1 φ̃ (P ν + HT σ)  βsgn (HΓσ) e−β|HΓσ|ΓT   e−γ  HΓ −σ +jz2
 HΓ −σ dσ, — 

2π 
−∞ 

X1 |Z1 

where P = I − HT (HΓ)−1ΓT . The second partial derivatives of φ̄ 
 
ν
  

with respect to ν are obtained by differ-   
ΓT ν 

entiating (5.11). This requires taking the differential with respect to ν of e−γ  HΓ 

  
−σ +jz2 

  
ΓT ν 

HΓ −σ , which is piecewise 
continuously differentiable and bounded, and of ∂φ̃ (P ν + HT σ)/∂ν, which is continuously differentiable by 
the result of the previous subsection. This implies that the integrands in (5.11) are piecewise continuous functions 
of σ, are continuous in ν, and have piecewise continuous and bounded first partial derivatives with respect to ν. 
Consequently, this implies that the Hessian of φ̄ 

 
ν
  

is continuous [2]. 

5.1.3. Continuity of the First Two Derivatives of φ̄ . In a recursive manner, the continuity of 

the first two derivatives of the characteristic function is now shown to be maintained when propagating from time 
step k to time step k + 1, as it was maintained in going from times step 1 to 2 in subsection 5.1.2. It is assumed 
that using the recursion up to stage k, φ̄ 

 
ν
  

as given in (4.1) is twice continuously differentiable. 
The time propagated characteristic function from k to k + 1, given in (4.4), is written as 

 

(5.12) 
¯ 

Xk+1 |Yk 

     
¯
 
Xk |Yk 

 
ΦT ν

  
e−β|ΓT ν|. 

Since e−β|Γ ν| is not continuously differentiable, φ̄ 
 
ν
  

is not continuously differentiable and minimum vari- 

ance estimates cannot be determined before the next measurement is processed. 

The measurement updated characteristic function at k +1 is given in (4.10) and rewritten here using the explicit 
form of (5.12) as 

 

 
(5.13) 

 
¯ 
Xk+1 |Yk+1 

 
ν
  
=   

1   
  

2π 
−∞ 

 
˜ 

Xk |Zk 
(ν − HT η)e−β|Γ ν−HΓη|e−γ|η|+jzk+1 η dη, 

where φ̃ ¯ 
Xk |Yk 

 
ΦT ν

 
.  The first derivative of φ̄ 

 
ν
  

is obtained in a manner similar to that used 

to construct (5.11). To take the second derivative, the change of variables given in (5.10) is used to obtain 
 
 
(5.14) 

¯ 
Xk+1 |Yk+1 

∂ν 

 
ν
  

= 

∞ 
˜
 
Xk |YK 

2π 
−∞ 

(P ν + HT 

σ) 

∂ν 

   
ΓT ν 

e−β|HΓσ|e−γ HΓ 

  
−σ +jzk+1 

   
ΓT ν 

HΓ −σ  dσ 

 ∞ 
ΓT     

ν 

   
ΓT ν 

1 φ̃ (P ν + HT σ)  βsgn (HΓσ) e−β|HΓσ|ΓT   e−γ  HΓ −σ +jzk+1
 HΓ −σ dσ. — 

2π 
−∞ 

Xk |Yk 

The integrands in (5.14) are at least piecewise continuous functions of σ and continuous in ν.  Moreover, their 

first partial derivatives with respect to ν are piecewise continuous and bounded. Therefore, φ̄ 
 
ν
  

is twice 
continuously differentiable [2], thereby justifying the supposition that the recursion produces a twice differentiable 
characteristic function after each measurement. 

5.1.4. Measurement Matrix H with Zero Elements. Suppose H has only one zero element, hj = 0, and 
assume that (H, Φ) is an observable pair. Therefore, (5.1) can be written as 

 

 
(5.15) φ̄ ν     = 

e−
 |(ej ,ν)| 

    n 
e−αi |νi −hi η|e−γ|η|+jz1 η dη =  

e−
 

|(ej ,ν)| 
φ̂ 

 
( ê , ν ), 

X1 |Z1 2π i=1 
−∞ i/=j 

2π X1 |Z1  ( j ) 

where ˆ 
X1 |Z1 ((êj , ν)) is determined by the integral in (5.15) and êj  is a n × n − 1 matrix defined as êj  = 

{e1, . . . , ej−1, ej+1, . . . , en}.   Due  to  our  previous  result  in  subsection  5.1.1, 
ˆ 
X1 |Z1 ((êj , ν)) and thus φ̄ 

 
ν
  



− j+1 n} 
φ 

T 

T 

j Φ 
φ φ j 

T 

X2 |Y2 

Xk |Yk 

Xk |Yk 

Xk |Yk 

Xk |Yk 

i  

i  

φ 

n 

i 

n n 

Xk |Yk 

T 

T T 

T 
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is twice continuously differentiable with respect to the (êj , ν) = {ν1, . . . , νj   1, ν , . . . , ν T .  However, clearly 
¯ 

X1 |Z1 

 
ν
   

is  not  continuously  differentiable  with  respect  to  (ej , ν) =  νj   due  to  the  term  e−αj |(ej ,ν)|  in  (5.15). 
Therefore, only a reduced-order state estimate can be constructed at k = 1. 

Using (5.15), the time propagated characteristic function at k = 2 is given by 
 
(5.16) φ̄ ν     = 

φ̂ 
(êT ΦT ν)e−αj |ej Φ ν|e −β|(Γ,ν)|. 

X2 |Z1 X1 |Z1    j 

After the second measurement update it is expressed as 

 ∞ 
(5.17) φ̄ ν     =  

1 φ̂ 
 

ΦT ν − HΦê η
  

e−αj |ej  Φ ν−HΦêj η)|e−β|Γ (ν−HT η)|e−γ|η|+jz2 η dη. 
X2 |Y2 2π X1 |Z1 j 

−∞ 

If HΦej = 0, as in (5.15), (5.17) decomposes as 
 
 

αj eT    T ν| 

(5.18) ¯ 
X2 |Y2 

 
ν
  
=  

e−    | 
2π 

ˆ 
X2 |Y2 (ê

T ΦT ν), 

where φ̂ (êT ΦT ν) is defined by the remaining integral in (5.17) after removing e−αj |ej Φ  ν| from it.  Clearly, 
X2 |Y2    j 

in this case φ̄ 
 
ν
  

is  not  continuously  differentiable at  ν  = {0}n.  However,  if  HΦej  /= 0,  there are  no  terms 
X2 |Y2 

that can be factored out like in (5.18). Moreover, since the integrand in (5.17) is continuous in η and ν, and has 
piecewise continuous and bounded derivatives with respect to those variables, using the procedure established in 
subsection 5.1.2, φ̄ 
when HΦej /= 0, φ̄ 

 
ν
  

is twice continuously differentiable.  Consequently, due to the result in subsection 5.1.3,  
ν  is twice continuously differentiable for any k ≥ 2. 

Xk |Yk 

Now we return to the case that HΦej = 0. Using the steps presented above, if HΦ2ej /= 0, then φ̄ 
 
ν
  

is twice continuously differentiable for any k ≥ 3.  Similarly, if also HΦ2ej  = 0 but HΦ3ej  /= 0, continuity  
can be proved for k ≥ 4.  Since the system is assumed to be observable, there always exist 1 ≤ £ ≤ n such  
that 

HΦp−1ej = 0 ∀p < £ and HΦ −1ej /= 0. Consequently, φ̄ 
 
ν
  

is twice continuously differentiable for any k ≥ £. 
This procedure can be extended to any number of zero elements of H. 

5.2. Construction of the Conditional Mean and Estimation Error Variance. Having established in the 

previous section that φ̄ 
 
ν
  

is twice continuously differentiable, the explicit form of the pdf of the measurement 

history, the conditional mean, and conditional variance is determined from (4.1-4.3) by evaluating φ̄ 
 
ν
  

and 

its derivative as ν → {0}n. We choose ν =  ν̂, where  is a positive scalar such that  → 0 and ν̂ is a fixed direction 
in the ν domain for which 

(5.19) (ak|k , ν̂) 

=/ 

0, ∀   (i, £). 

Along this direction the conditional mean and conditional variance will be shown to be easily computable, avoiding 

the discontinuity issues of sgn  (ak|k , ν̂)  when the condition in (5.19) does not hold. Due to the continuity of 
¯ 

Xk |Yk 

 
ν
  

and its first two derivatives, any ν̂ can be chosen as long as (5.19) holds.  With this choice of ν, 

(5.20) sgn  (ak|k , ν̂)  = sgn  (ak|k , ν̂)  = si 
i i  

 

are well defined constants that satisfy |si | = 1. From (4.1-4.3), φ̄ 
 
·
  

along this direction is given by 
 
 
 

k|k 
t 

Xk |Yk 

(5.21) φ̄ ν̂      =      gk|k   yk|k 
( ν̂)  exp  yk|k 

( ν̂)  , 
Xk |Yk i gi ei 

i=1 

where the functions gk|k 
(·) are given in (4.2). Their arguments, defined in (4.3), are 

 
yk|k 

 

 
k|k 
ei   

 

 
k|k 

 

 
k|k 

 

 
k|k 
ei   

 

 
k|k i 

 

 
k|k k 

(5.22) gi ( ν̂) =  
 
 =1 

qi    sgn (ai    , ν̂) = 
 =1 

qi   s = ygi  (ν̂) ∈ R . 

Since the vector ν̂ is constant, the arguments yk|k 
(·) and thus the coefficient functions gk|k 

(·) are constant along 
gi 

the chosen direction. This will simplify greatly the evaluation of φ̄ 

i  
·  and its derivatives at the origin of the 

spectral variable ν. 



ei 

n n 

n 

n 

t 

Xk |Yk 

  1 ∂φ 
 
 ν̂ 

\
 

Xk |Yk 

Xk |Yk 
  

n 

Xk |Yk 

∂φ t 

n 

g i ei 

  
k 

∂ φ t 

  

  

g y 

yk 
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Similarly, the arguments yk|k 
(·) of the exponents in (5.21), defined in (4.3), are manipulated as follows 

yk|k 
k|k 
ei   k|k k|k k|k 

k|k 
ei   k|k k|k k|k k|k 

(5.23) ei  ( ν̂) = − 
 =1 

pi    |(ai    ,  ν̂)| + j(bi    ,  ν̂) = − 
 =1 

pi    sgn (ai    , ν̂) (ai    , ν̂) + j(bi    , ν̂) 

k|k 
ei 

=  −     pk|k si (ak|k , ν̂) + j(bk|k , ν̂) = (ȳk|k 
(ν̂), ν̂), 

where we have defined 

i i  
 =1 

i ei 

k|k 
ei 

(5.24) ȳk|k 
(ν̂) = −    pk|k si ak|k 

+ jbk|k , 
ei i i i 

 =1 
k|k k|k 

which is a n-dimensional vector. Since the vector ν̂ is constant, so is the expression (ȳei  (ν̂), ν̂), making yei  (·) of 
the exponents linear in   along the chosen direction. Using the above results, (5.21) can be restated as 

(5.25) 
nk|k 

φ̄ ν̂     =     gk|k   yk|k 
(ν̂)  exp   (ȳk|k 

(ν̂), ν̂) . 
Xk |Yk i gi ei 

i=1 

This last form of φ̄ 
 
 ν̂

  
will now be used to compute the minimum variance estimate and its error variance. 

The conditional mean of the state xk given the data sequence yk is given by 

( 
¯ T 

  
Xk |Yk 

  
(5.26) x̂k = E[xk |yk ] = j fYk 

 
yk 

  ∂( ν̂) 
  .    
E=0 

The pdf fYk   yk    needed to normalize the above result is determined by evaluating φ̄ 
 
 ν̂

   
at     =  0.   Using 

(5.25) we obtain that 
 

(5.27) fYk   yk   = φ̄ 

  
 ν̂

  
  
E=0 

k|k 
t 

= 
  
i=1 

k|k 
  

i 

 
 
k|k 
gi 

 

 
(ν̂)  , 

where gk|k 
(·) are given in (4.2) and the arguments yk|k 

(ν̂) were defined in (5.22). 
i 

The derivative of φ̄ 

gi  
·  used in (5.26) is determined by differentiating (5.25).   Since, as stated earlier, 

gk|k    yk|k k|k 

i gi (ν̂) and (ȳei  (ν̂), ν̂) are constant, the derivative is evaluated as 
 
 

 
(5.28) 

( 
¯

 
Xk |Yk 

 
 ν̂

  \T
 nk|k 

=      gk|k   yk|k 
(ν̂)  ȳk|k 

(ν̂) exp   (ȳk|k 
(ν̂), ν̂) . 

∂( ν̂) i gi ei ei 
i=1 

Evaluating (5.28) at  = 0 yields the minimum conditional variance estimate 
 

  1   k|k 
t  k k     k k k k 

(5.29)  
 
 

k|k 

 
 
 

k|k 

x̂k = 

 
k|k 

j fYk 

  |    i 
i=1 

yg 
| 

(ν̂) ȳ | 
(ν̂), 

where fYk   yk  , gi   (·), ygi  (ν̂), and ȳei  (ν̂) are given in (5.27), (4.2), (5.22) and (5.24), respectively. 
The second conditional moment of xk given yk is determined by 

1 ∂2φ̄ 
 
 ν̂

   
 

(5.30) E[xk xT |yk ] =   Xk |Yk  
  

. k j2 fY    yk    ∂( ν̂)∂( ν̂)T 
   
E=0 

The second derivative in the above equation is computed by differentiating (5.28) to yield 
 
 

 (5.31) 
2 ̄  

Xk |Yk 

 
 ν̂

 
 nk|k 
=      gk|k   yk|k 

(ν̂)    ¯
k|k 

(ν̂)    ¯
k|k 

(ν̂)  
T 

exp     ȳk|k 
(ν̂), ν̂   . 

∂( ν̂)∂( ν̂)T i gi 
i=1 

yei yei ( ei ) 



k 
k 

n 

g gi k|k 
k|k 

Xk |Zk 

 
k=1 

z2 

X1 |Z1 

∂φ    
T 

∂φ   
T 

z2 

 1 

+ 

1  

+ 1 
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Hence the second moment is given by 

 

(5.32) E[xk xT |yk ] = 
1 

j2 fY   yk 
 
 

k|k 
t     k|k 

i 
i=1 

yk|k 
(ν̂) 

 
    

ȳei  (ν̂) 

 
     T 

ȳei  (ν̂) . 

 

Finally, from (5.29) and (5.32), the error x̃k = xk − x̂k variance can be evaluated as 

(5.33) E[x̃k x̃T |yk ] = E[xk xT |yk ] − x̂k x̂T . 
k k k 

 

5.3. Conditional Mean and Estimation Error Variance at k = 1. To appreciate the complex results 
given in section 5.2 and to understand the underlying structure of the Cauchy estimator, greatly simplified and 
compact expressions are determined for k = 1.  Here we address the case that hi /= 0 for i = {1, . . . , n}.  The 
characteristic function φ̄ 

 
ν
  

evaluated along ν =  ν̂ is given in (5.25).  For k = 1 it can be easily simplified to 
(5.34)  

n+1 

 
 
 

n+1 
−1  

 
 
 

n+1 
−1   

n+1 
φ̄ ν̂     = 1

 

  jz + ρ +     ρ s  − jz − ρ  +     ρ s   
exp 

−     ρ (aT  ν̂)s  + jz µT  ν̂. 

X1 |Z1 
2π   1 

i=1 
i 

 =1 
 /=i 

i    1 i 
 =1 
 /=i 

i    
 =1 
 /=i 

 i  i 1  i  

 

The pdf of the measurement history, the conditional mean, and the conditional variance are found by evaluating 
(5.34) and its first two derivatives at = 0. There are many straight forward manipulations needed to obtain our 
final compact results presented here. These detailed derivations are omitted here for brevity. 

First, fYk   yk 
  

 = fZ1   z1  , given in (5.27), is determined by letting   → 0 in (5.34) and noting that most of 
the term in the remaining sum cancel leaving all but the first and last terms. The final form is thus determined as 

 
 
 
(5.35) fZ1   z1   = 

( 
  jz1 + ρ1 + 

 
 
n+1 
  

\−1 ( 
ρ − 

 
jz1 − 

 
 
n+1 
  

\−1 
ρ  = 

n 

1 
), 

α |h | + γ 
 =1 . 

2π 
 =2 

 
 =1 

π ( n ), 
1 

 =1 

 2 

α |h | + γ 
 

In the last equality, the initial parameters in (2.4) and (3.11) are used. 

The conditional mean is computed by taking the derivative of φ̄ 

  
 ν̂   given by (5.34) and then letting 

  → 0. We obtain 
(5.36) 

 
 

 

 
 

−1  

 

 
−1   

¯ X1 |Z1 

 
 ν̂

   
 n+1     

n+1 
    jz n+1 − ρ + 

 
 n+1  
    

T  
∂ ν̂ 

= 
2π 

 jz1 + ρi + ρ si  −    1 i ρ si    ρ si ai  + jz1µi  ,   
E=0 i=1  =1 

 /=i 
 =1 
 /=i 

 =1 
 /=i 

 

where a i = −ai  was used in (5.36). To simplify the above, place numerator terms over the common denominator 

elements as given in the sum of (5.36). In doing so, after a bit of straight forward algebra and using the decomposition 

ai  = µi − µ , these elements simplify such that all but the first and last terms cancel. Therefore, we obtain 
 
 
 
(5.37) 

 
 

¯ 
X1 |Z1 

  
 ν̂

   
 

  

 n 
jz1 

), 
ρ µ  

= 
1 =1 . ∂ ν̂ 

   
E=0 

π (n+1  2 

), 
ρ 

 
 =1 

 

Dividing (5.37) by (5.35) and the imaginary number j, the conditional mean is determined as 
 
 
 
(5.38) 

 
 
x̂1 = 

n 

z1 
), 

ρ µ  
 =1 

 
 
= z1 

f
α sgn (h ) 

 
· · · 

 

 
α sgn (h 

)
lT 

. 
n+1 1 1 n n 

n 
), 

ρ 
 

 =1 

), 
α |hi| + γ 

 =1 
 

This is the explicit form of the conditional mean given in (5.29) evaluated and simplified at k = 1. 



X1 |Z1 

∂ φ   

T 

1 

1 
  

1 
z l  

. 

1 

  

  

f 
  

  

 
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The conditional second moment is determined from the second partial derivative of φ̄ 
 
 ν̂

  
with respect to 

 ν̂ and letting   → 0 as 

 −1  −1 
(5.39) 

2 ̄  X1 |Z1 

 
 ν̂

   
 n+1 

= 
jz n+1 

+ ρ +     ρ s  − jz n+1 − ρ  +      ρ s   
∂ ν̂∂ ν̂T 

  
   
E=0 2π   1 

i=1 
i 

 =1 
 /=i 

i    1 
 

 

i 
 =1 
 /=i 

i   
 

   
n+1 

×  n+1   
T T  

− 
 =1 
 /=i 

ρ si a i + jz1µi −  
 
 =1 
 
/=i 

ρ si a i + jz1µi  

 

To simplify (5.39), place numerator terms over the common denominator elements as given explicitly in the sum 

in (5.39). In doing so, after a bit of straight forward algebra, having made use of the decomposition ai  = µi − µ , 
these elements simplify greatly. The result is 

 

 
∂2φ̄ 

  
 ν̂

   
 

(n+1 

), 
ρ 

 

  (  n ), 
ρ µ  

  (  n ), 
ρ µ n 

(5.40) π X1 |Z1  
 
 =  =1 =1 =1  T 

∂ ν̂∂ ν̂T 

  
   
E=0 

 
z2 + 

(n+1 2 

), 
ρ 

 
 =1 

− 
 =1 

ρ µ µ  . 

 

The conditional second moment is given by  
 
1 ∂2φ̄ 

 
  

 ν̂
   

 
(5.41) E 

f
x1xT |z1

l 
= − 

Z 1 

X1 |Z1  
 
   , 

1 (z ) 
∂ ν̂∂ ν̂T 

E=0 

where fZ1 (z1) is found in (5.35). The conditional error variance, where x̃1 = x1 − x̂1, is then determined as 

  
α1

 
( n \ 

α |h | + γ . . . −α α 
 

sgn (h ) sgn (h ) 
f 

(5.42) E 
f
x̃1x̃T |z1

l 
=  1 + 

 
 

2 
1 ),n 

 |h1|  

2    
 

 
i=2 

i  i 

...
 

1   n 1 n   

... 

 
( i=1 αi|hi| + γ) 

   
−α1αnsgn (h1) sgn (hn)    · · · 

 
αn 

|hn| 

(n−1 
  

 
i=1 

 \   
αi|hi| + γ  

 

This is an explicit form of the conditional variance given in (5.33) for k = 1. 

It is surprising that at k = 1 the pdf of the measurement history, the minimum variance estimate and the 
estimation error covariance matrix given, respectively, in (5.35), (5.38), and (5.42) can be expressed analytically in 
such a compact and relatively simple form as functions of the system parameters and the first measurement. Such 
simplicity is not retained for the subsequent time steps. It is also interesting to note that, contrary to the Gaussian 
case where the estimation error variance is known a priori, the estimation error variance of (5.42) is an explicit 
(quadratic) function of the measurement z1 . 

6. Three-Dimensional State Estimator. The performance of the proposed estimator was tested numeri- 
cally. The system parameters were chosen as follows: 

 
1.4     −0.6     −1.0  


 

 
0.1  


 

 
α1  

     
0.1  


 

Φ =  −0.2 1.0 0.5  , Γ =  
0.6    −0.6    −0.2 

0.3  , 
−0.2 

 α2 

α3 

 =  0.08  , 
0.05 

H = 
f 

1.0 0.5 0.2 
l 
, β = 0.1, γ = 0.2. 

The system has stable eigenvalues at 0.7 ± 0.3j and 0.8. It is observable and complies with the necessary condition 
that HΓ /= 0. 

The simulation results are depicted in Fig. 6.1, showing the estimation errors in 6.1(a), and the cross-correlation, 

process and measurement noises in 6.1(b). It can be clearly observed that the estimation error standard deviation 
depends on the measurement sequence. Specifically, the standard deviation increases when a large measurement 
noise is encountered, e.g., at time step #4. 



       

       

 
       

       

 

x̃ 3
 

x̃ 2
 

x̃ 1
 

ρ i
j 

v 
w
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Estimation Error 
 

1 

  Error Standard Deviation ( ±σ) 

1 

 
  ρ12 

 
  ρ13 

 
  ρ23 
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1 
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2 
 

0 0 
 

−1 
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1 

−2 
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2 
 

0 0 
 

−1 
1 2 3 4 5 6 7 8 

Step # 

(a) Estimation  Errors 

−2 
1 2 3 4 5 6 7 8 

Step # 

(b) Cross-correlations and system noises 
 

Fig. 6.1. Three-State Estimation Example: Numerical Results 
 
 
 

7. Conclusions. For a linear discrete-time system with additive Cauchy measurement and process noises, an 
analytic recursion of the characteristic function of the unnormalized condition pdf is determined for the n-vector 
state estimator. This characteristic function is shown to be a growing sum of terms involving a coefficient function 
multiplied by an exponential whose arguments are weighted nonlinear functions of the spectral variable. It is 
then shown that this characteristic function is twice continuously differentiable, allowing the determination of the 
conditional mean and the conditional second moment, from which the conditional error variance is determined. 
These moments are a nonlinear function of the measurement history, where the conditional mean constitutes the 
Cauchy estimator for the multivariable system. The estimator was then evaluated numerically for a third-order 
example. At this stage of the numerical development, only a few steps in time are shown for this example because 
of the excessively large number of terms needed to represent the characteristic function. Nonetheless, this is the 
first time that a closed-form analytical estimator is derived for a multivariable system with heavy tailed Cauchy 
process and measurement noises. 
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Appendix A. Characteristic Function of an Unnormalized Conditional PDF Given a Scalar Mea- 

surement. Consider a scalar measurement of an n-dimensional state vector as 
n 

(A.1) z = Hx + v =      hixi + v. 
i=1 

where z is a given scalar measurement, x ∈ Rn, and v is Cauchy distributed. For this measurement, the characteristic 

function of the unnormalized conditional density function is given as 
 
 
(A.2) 

 
¯ 

X|Z 

  
ν  =

 
 ∞ 

· · · 
 ∞ 

fX  x 
 
fV 

  
 
z − Hx 

 
ejν 

 
xdx. 

−∞ −∞ 

The above resembles a Fourier transform of a product of two functions: fX  x  and fV  z − Hx . Using the dual 

convolution property, this integral can be solved by a convolution in the ν domain between the characteristic 

function of fX  x , i.e., φX  ν , and the characteristic function of fV   z − Hx , which we denote by φ̂V   ν . Hence, 
¯ 

X|Z 
 
ν
  

can be computed by the convolution integral 

 ∞  ∞ 

(A.3) ¯ 
X|Z 

 
ν
  
=  

1 

(2π)n 
−∞ 

· · · 
−∞ 

φX  ν − η  φ̂V 
 
η
  

dη. 

The characteristic function φ̂V   ν  is determined as follows 
 
 
(A.4) 

 
φ̂V  ν  = 

 ∞ 

· · · 
∞ 

fV   z − Hx  ejν 

 
xdx = 

 ∞ 

· · · 
 ∞ ( 

fV 

n \ 
z −     hixi ej 

i=1 νi xi dx1 · · · dxn. 

−∞ −∞ −∞ −∞ i=1 

Assuming, without loss of generality, that hn /= 0, we perform the change of variables ξ = z − 
),n

 hixi. This 

implies xn  =   z − ξ − 
),n−1 hixi   /hn  and for fixed xi, i = 1, . . . , n − 1, dxn  = dξ/|hn|.  Using this change of 

variables, (A.4) is manipulated as 
 
 
(A.5) 

 
φ̂V (ν) = 

 ∞ 

· · · 
 ∞ 

fV (ξ)e 
( 

j i=1 νi xi +νn 
z−ξ−

),
i=1 hi xi 

 
 

hn 

 
dξ/|hn|dx1  · · · dxn−1 

−∞ −∞  ∞        ∞ ∞  
        ejνn z/hn   νn 

  j ),n−1 ν − ν    x 
 

= 

|hn| 
fV (ξ)e−j hn 

ξ dξ 
   
−∞ −∞ 

· · · e 
−∞ 

i=1 i   hn  n i dx1 · · · dxn   1 
 

ejνn z/hn 
= φV 

( 
ν    n−1 

 ∞ 
−  j νi − hi νn 

 
dxi = ejνn z/hn 

φV 
( 

νn
 

− 
  n−1    

(2π)δ 
( 

hi
 

νi − νn , 
|hn| h i=1 

−∞ 
|hn| h h 

i=1 

where δ(·) is the Dirac delta function. Substitute (A.5) into (A.3) to obtain 

n  1 ∞ ∞ 
ηn 

( 
ηn

   n−1    ( 
h

 

(A.6) 
¯ 

X|Z (2π) (ν) = 
(2π)n|hn| 

−∞ 

· · · 
−∞ 

φX (ν − η)ej hn 
z  

V 
n 

n 
δ

 
i=1 

ηi − ηn 
n 

dη1 · · · dη n−1 dηn 

     1   
= 

2π|hn| 

 ∞ ( 
φX ν − HT 

ηn
 

ηn 

ej hn z φV
 

hn 

( 
ηn

 

− hn
 

 
dηn. 

−∞ 

Finally, using the change of variables η = ηn/hn  and hence dηn = dη|hn|, the last equation can be restated as 

 ∞ 

(A.7) ¯ 
X|Z 

1 
(ν) = 

2π 
−∞ 

φX   ν − HT η  φV (−η) ejzη dη. 

 

Appendix B. Integral of an Exponent of Absolute Values. The measurement update stage of the 
Cauchy estimator entails evaluating a convolution integral that involves an exponential of absolute values of affine 
functions in the spectral variables. In this appendix we present a methodology for carrying out such integrals. 
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B.1. Exponent-Only Integral. In the first scalar measurement update, e.g., (3.8), we encountered the basic 
integral of the form 

 ∞ 

(B.1) I = 

−∞ 

 

 
exp 

f( n \ 
− ρ |ξ  − η| 

 =1 

l 
+ jzη 

 
 
dη, 

where z is the measurement, ρ -s are positive constants, and the ξ -s are variables linear in ν. The difficulty in 
evaluating this integral is that the ξ -s must be ordered to carry out the integration. However, since the ξ -s are 
functions of the spectral variables ν-s which take on any value, any ordering of ξ -s is possible. We show that the 
solution to this integral can be expressed in closed form regardless of the order. For convenience, define 

(B.2)                                                           ξ0 = −∞,       ξn+1 = ∞. 
To carry out the integral, we first assume that ξ ≤ ξi for all £ < i with (£, i) ∈ {0, . . . , n + 1}. In this case the 

integral (B.1) can be decomposed into the sum 
(B.3) 

 
n 

I = 
 

 

 
ξi+1 

   
exp 

f( n \ 
− ρ |ξ  − η| 

l 
 

+ jzη  dη


 

 
ξi+1 

n    
= exp 

f( n \ 
− ρ (ξ  − η)sgn (ξ  − η) 

l 
 

+ jzη  dη
 

. 

i=0 
 

ξi
  =1  i=0 

 
ξi

  =1 
 

Note that sgn (ξ  − η) is constant over the interval η ∈ (ξi, ξi+1), ∀i.  This constant depends on the relative size of 
the indices £ and i. With this in mind, for η in the closure η ∈ [ξi, ξi+1], we can define the sign function in (B.3) as ( 

sgn (ξ − ξi)  if i /= £ 
(B.4) sgn (ξ − η) = s  = −1 if  i = £ 

From (B.4), for a given i, the discrete, two indexed function s  is constant for all £ except for one switch at £ = i, 
i.e., s  = −1 ∀ £ ≤ i and s  = 1 ∀ £ > i. Moreover, it can be concluded that s  = s  ∀ i /= £. 

i i i i−1 
Using the definitions in (B.4), (B.3) can be restated in terms of s  and integrated as 

 
 

n 
(B.5)  I = 

 
 

 
ξi+1 

   
exp 

f( n \ 
  

i 

l 
 

+ jzη  dη


 
i=0 

 
ξi

 

 
 =1 

 ( n 

 
     ( n    

n   exp − 
), 

ρ (ξ  − ξi+1)s  + jzξi+1   n   exp − 
), 

ρ (ξ  − ξi)s  + jzξi    

=     
 

  i  
 =1 

n 

  
=1 

i  
— n . 

i=0  jz + 
), 

ρ s   i=0  jz + 
), 

ρ s  
 

=1 
i   i 

 =1 

The first sum in (B.5) can be manipulated as follows 

 ( n      ( n    
n   exp − 

), 
ρ (ξ  − ξi+1)s  + jzξi+1   n  1  exp − 

), 
ρ (ξ  − ξi+1)s  + jzξi+1   

(B.6) 
  i     =1 

n  
= 
   

=1 
i  

n 
i=0  jz + 

), 
ρ s   i=0  jz + 

), 
ρ s   

 ( n 

i 
 =1 

  
   ( n 

i 
 =1 

   
exp − 

), 
ρ (ξ  − ξn+1)s  + jzξn+1 n   exp − 

), 
ρ (ξ  − ξi)s  + jzξi    

  n  
 =1 

n 
     

 =1 
i−1   

= n . 
jz + 

), 
ρ s  

 =1 
         

=0 because s£ =−1 ∀  ≤n and ξn+1 =∞ 

i=1  jz + 
), 

ρ s  
 =1 

Since si 
− 

= 1 and s  
− 

= s  ∀ i /= £, the above result can be simplified as 

 ( n 

     
exp 

  
n − 
), 

ρ (ξ  − ξi)s  

  
+ jzξi    


 

n   exp − 
), 

ρ (ξ  − ξi)s  + jzξi    n  


  
 =1 i     

(B.7) 
     

 =1 
i−1    
n = 

 =/   i 
 

n 
i=1  jz + 

), 
ρ s   i=1  jz + ρi + 

), 
ρ s   

=1 
i−1    

 
i  =1 

 /=i  



i−1 

  

i 

  

i 

  

i − ρ (ξ  − η)s  

  
. 

  

  

 
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In the above, the zero term ρi(ξi − ξi)si = 0 was dropped from the sum in the exponent. 

The second sum in (B.5) can be manipulated in a similar fashion to yield 

 ( n 

     
exp 

  
n − 
), 

ρ (ξ  − ξi)s  

  
+ jzξi    


 

n   exp − 
), 

ρ (ξ  − ξi)s  + jzξi    n  


  
 =1 i     

(B.8) 
  i     =1 

n  
=      

 =/   i 
 

n 

i=0  jz + 
), 

ρ s   i=1  jz − ρi + 
), 

ρ s   
=1 

i    
 

i  =1 
 /=i  

 
Substituting (B.7), (B.8), and s = sgn (ξ − ξi) ∀ £ /= i of (B.4) into (B.5), the solution to (B.1) is expressed as 

     
n n n 

(B.9) I =     gi 
    ρ sgn (ξ − ξ ) 

exp 
−     ρ  |ξ − ξ | 

+ jzξ  , 
 

i=1 
 

 =1 
 
/=i 

i    
 =1 
 
/=i 

i  i 

 

where 

  n 
1  1 

(B.10) gi 
     ρ sgn (ξ − ξ ) 

= n — n . 
 

 =1 
 /=i 

i  
jz + ρi + 

), 
ρ sgn (ξ − ξi) 

 =1 
 /=i 

jz − ρi + 
), 

ρ sgn (ξ − ξi) 
 =1 
 /=i 

 

Changing the ordering of the ξ -s caused by changes in the ν-s does not change the solution of the integral 
given by (B.10). Effectively, the sgn function in the exponential and denominator make the integral independent 
of the ordering of the ξ -s and thus giving a general result for the integral of (B.1). 

B.2. Generalized Integral. In the second and subsequent measurement update steps we encounter a more 
general integral of the form 

 

 ∞ 

(B.11) I = 

−∞ 

( n \ 
g        Q sgn (ξ  − η) 

 =1 

 
exp 

f( n \ 
− ρ |ξ  − η| 

 =1 

l 
+ jzη 

 
dη, 

 

where Q   could be m-dimensional vectors. We use the same methodology as before to solve the integral in (B.11). 
Using the definitions of ξ0  and ξn+1  in (B.2), and those of s  in (B.4), the integral is restated as 

 

 
 
(B.12) 
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 
ξi+1 
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( n \ 
  

Q sgn (ξ  − η) 

 
 
exp 

f( n \ 
− ρ (ξ  − η)sgn (ξ  − η) 

l 
 

+ jzη  dη


 
i=0 

 
ξi

  
ξi+1 

 =1  =1 
 

 
n     

= 
( n \ 

g           Q s  exp 

f( n \ 
  

i 

l  
+ jzη  dη . 

i=0 
 

ξi
  =1  =1 
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It is integrated as 
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n   g 

), 
Q s  exp − 

), 
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and manipulated as before to yield 

        
n n 

 g Qi + 
), 

Q s  g −Qi + 
), 

Q s      
n  

 
=1  =1 

 
n 

(B.14) I =    


 /=i 
    /=i  

     
 n − n  exp − ρ (ξ − ξi)si  + jzξi . 

i=1 
 jz + ρi + 

), 
ρ s  jz − ρi + 

), 
ρ s     =1  

=1
 i

  
/=i 

i  =1 
 /=i 

 /=i 

 

Substituting s  = sgn (ξ  − ξi) ∀ £ /= i, the integral becomes 
 

n n n 
    

n 
(B.15) I =     Gi 

    Q sgn (ξ — ξ ) ,      ρ sgn (ξ − ξ ) 
exp 

−     ρ  |ξ − ξ | 
+ jzξ  , 
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(B.16) 
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/=i 
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 =1 
 /=i 
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i   
 
 
 
 
 

n 
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 

  i   i 
 
 
 
 

  
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  g Qi + 
), 

Q sgn (ξ − ξi) 
n n =1 

g −Qi + 
), 

Q sgn (ξ  − ξi) 
 =1 

Gi 
   Q sgn (ξ  − ξi) , ρ sgn (ξ  − ξi)

 
=  
   /=i 

n 

 =i 
— n . ), 

 =1 
 /=i 

 =1 
 /=i 

jz + ρi + 
), 

ρ sgn (ξ − ξi) 
 =1 
 /=i 

jz − ρi + 
 
 
 =1 
 
/=i 

ρ sgn (ξ  − ξi) 

 

Appendix C. Time Propagation of Characteristic Functions for Linear Systems. In this appendix 
we consider a multi-stage propagation of a random vector through a linear system, i.e. xk+1 = Φxk + Γwk , where 
xk  ∈ Rn  is the system state, the initial conditions x1  ∈ Rn  and process noise wk  ∈ Rm  are independent random 
vectors with given pdfs fX1   x1   and fW  w , and characteristic functions φX1   νx   and φW  νw  , respectively. Note 
that here νx ∈ Rn, while νw ∈ Rm. For simplicity, the pdf and hence the characteristic function of w are assumed 

to be constant for all k. Φ ∈ Rn×n  and Γ ∈ Rn×m  are known matrices, with |Φ| =/ 0. 
Assume that at step k the state pdf and characteristic function are given by fXk   xk   and φXk   νx  . The pdf of 

xk+1 is determined by using the linear transformation 
 
(C.1) 

(
xk+1

 
  

Φ    Γ
  (

xk 
  (

xk 
  

 
Φ−1 −Φ−1Γ

  (
xk+1

 
 

 

 
 
in the joint density fXk W  xk , wk   = fXk   xk   fW  wk   and finding the marginal density [11] as 

(C.2) fXk+1  xk+1  = Φ−    
 ∞ 

fXk Φ−1xk+1  − Φ−1 

 
 
Γwk 

 
fW  wk   dwk . 

−∞ 

The characteristic function of xk+1 is given by 

(C.3) φXk+1   ν  = Φ−    
 ∞    ∞ 

 

 
 
fXk Φ−1xk+1  − Φ−1 

 
 
Γwk 

 

fW   wk    dwk  
 
ejνT xk+1 

 
 
dxk+1 

−∞ −∞ 

Interchanging the order of integration, and using the substitution xk+1  = Φxk  + Γwk     ⇒  dxk+1  = |Φ|dxk , the 

integral in (C.3) is solved as 
 
 
(C.4) 

 
φXk+1   ν = 

 ∞    ∞ 

 
 
fXk  xk  e 

 
 
jνT (Φxk +Γwk ) 

 

dxk  fW  wk   dwk 

−∞ 

   ∞ 
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−∞ 

−∞ 
 
 
fXk  xk  e 

 
 
 
jνT Φxk 

  ∞ 

dxk   
−∞ 

 
 
fW  wk   e 

 
 
 
jνT Γwk 

 

dwk  = φXk   Φ 

 
 
ν  φW  ΓT 

 
 
ν  . 
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Abstract—The conditional mean estimator for a n-state linear 
system with additive Cauchy measurement and process noises is 
developed. For the multi-variable system state, the characteristic 
function of the unnormalized conditional probability density 
function is sequentially propagated through measurement up- 
dates and dynamic state propagation, while expressing the result- 
ing characteristic function in a closed analytical form. Continuity 
of this characteristic function and  its  first  two  derivatives  at 
the origin of the spectral variable is proven. It is then used to 
determine the desired conditional mean and conditional variance 
in a closed analytical form to yield the sequential state estimator. 
A three-state dynamic system example demonstrates numerically 
the performance of the Cauchy estimator. 

 
I. INTRODUCTION 

In many engineering, economic, telecommunications, and 
science applications the underlying random processes or noises 
have significant volatility, which is not captured by the light- 
tailed Gaussian probability density functions (pdf) [1]. Heavy- 
tailed distributions have been shown to better represent these 
volatile random fluctuations. Examples are radar and sonar 
sensor noise [2] and air turbulent environment noise [3]. Our 
objective is to develop a filtering technique for linear dynamic 
systems with heavy-tailed distributed noises while using a 
particular distribution out of the class of symmetric α-stable 
distributions [4]. Particular distributions of this class are the 
Lévy, Gaussian and Cauchy distributions. 

The use of heavy tail (Sα-S) distributions was demon- 
strated to yield improved filtering and detection results when 
processing radar signals [5]–[7], radar glint [8], data in a 
multi-user communication networks [9] and aircraft naviga- 
tion [10]. These results and  the  degraded  performance  of 
the standard Gaussian estimators when exposed to impulsive 
noises motivated the derivation of a sequential non-linear 
estimator for scalar linear dynamic systems with additive 
Cauchy process and measurement noises [11]. This result was 
based on propagating the conditional pdf (cpdf) of the system 
state given the measurement history. 

Unfortunately, the recursion scheme for generating the cpdf 
directly for a scalar linear system [11] does not generalize 
to the vector state. In [12] a similar estimator was derived 
by generating the characteristic function of the unnormalized 

paper, which is organized as follows. The estimation problem 
for a n-dimensional, discrete-time, linear system forced by 
scalar Cauchy process noise and a scalar measurement with 
additive cauchy measurement noise is formulated in section 
II. In section III,  the  characteristic  function  for  the  ucpdf 
of the system state conditioned on the measured history is 
computed sequentially for the first measurement update and 
a time propagation step. This motivates the general form of 
the characteristic function for the ucpdf given in section IV, 
which is shown to be continuous and twice differentiable in 
section V and yields closed-form analytical expressions for 
the minimum variance estimate of the states and the estimation 
error conditional variance. In section VI a three state system is 
used to exemplify the performance of the sequential estimator. 
Concluding remarks are given in section VII. 

II. PROBLEM FORMULATION 

We consider the single-input-single-output multivariable lin- 
ear system 

xk+1 = Φxk + Γwk , zk = Hxk + vk , (1) 

with state vector xk ∈ Rn, scalar measurement zk , and known 
matrices  Φ  ∈  Rn×n,  Γ  ∈  Rn×1,  and  H  ∈  R1×n.  The 
noise inputs are assumed to be independent Cauchy distributed 
random variables. Specifically, wk is assumed to be Cauchy 
distributed with a zero median and a scaling parameter β > 0. 
Similarly, vk has a Cauchy pdf with a median of zero and a 
scaling parameter γ > 0. The characteristic functions of these 
scalar noises are assumed to be time independent and given 
by 

φW   ν̄   = e−β|ν̄ |, φV   ν̄   = e−γ|ν̄ |. (2) 

These characteristic functions have a scalar argument ν̄ . The 
initial conditions at k = 1 are also assumed to be independent 
Cauchy distributed random variables. Specifically, each i-th 
element x1i of the initial state vector x1 has a Cauchy pdf with 
a zero median and a scaling parameter αi > 0, i = 1, . . . , n. 
The characteristic function of the joint pdf of the initial 
conditions, which is a function of a n-dimensional spectral 
variable ν ∈ Rn, is given by 

cpdf (ucpdf) in a recursive scheme. This approach is somewhat 
simpler than the scheme in [11], allows for a stronger result 
regarding the decay of the estimator parameters with time, and 

 
φX1   ν  = 

n 
n 
 
i=1 

 
e−αi |νi 

/ 
| = exp  − 

n 
  
 
i=1 

\ 

αi|νi| 

can be generalized to the multi-variable case. I/ n \ l 
The generalization of the characteristic function of the ucpdf [', exp − p1|(a1, ν)| + j(b1, ν) .   (3) 

approach [12] to the multi-variable case is the essence of this 
i i  1 

i=1 
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1 

The last form was introduced for notational convenience to be 
used in the sequel. We used the definitions 

where φV   ·  and φX1   ·  were defined in (2) and (3), respec- 
tively. Hence (9) can be restated as 

p1 1 1 r∞ I/ \ 
i = αi,  ai  = ei, i = 1, . . . , n, b1 = {0}n, (4) 

where ei  is a n-dimensional i-th unity vector and {0}n  is 
n-dimensional vector of zeros. With this formulation of the 

¯ 
X1 |Z1 

 
ν
  

= 
e j(b1 ,ν) 

2π 
−∞ 

 
exp 

n    
1
 

− i |( 
i=1 

a1, ν) − 

l 

Ha1η| 

system, our goal is to compute the minimum variance estimate 
of xk  given the measurement measurement history, i.e., yk = −γ|η| + j z1 — Hb1  η dη.   (10) 
 

z1 · · · zk   .  
 

III. INITIAL DERIVATIONS 

This integral is solved using the general result presented in 
Appendix B. For that, the coefficients of η in the absolute value 

The method proposed to solve this Cauchy estimation prob- 
lem entails propagating the characteristic function of the cpdf 
of the state vector given a history of measurements. Evaluating 
this characteristic function and its derivatives at the origin of 
the spectral vector ν will provide the desired state estimate and 

term of (10) have to be normalized to one. Clearly, this cannot 
be attained if some of these coefficients are zero. Hence, we 
assume that Ha1 /= 0, i = 1, . . . , n, or equivalently that  
all 
the elements of are nonzero. With this assumption, (10) is 
restated as 

its error variance. The characteristic function is initiated by 
the expression given in (3). It changes during a measurement 

¯ 
X1 |Z1 

j(b1 ,ν) 
 
ν  =

 
2π 

update when a new measurement is processed, and during time 
propagation affected by the process noise input. We begin by 
showing how this characteristic function is computed for the 

r∞ 

× exp 
−∞ 

/ n+1 \ 
− ρi |(µi, ν) − η| + jζ1η 

i=1 

 
dη,   (11) 

first measurement update and time propagation step. This will 
suggest the general form of the characteristic function and where we defined 

ρi = p1 1 1  1 

hence the general estimator. i |Hai |, µi = ai /(Hai ), i = 1, . . . , n, 
ρn+1 = γ, µn+1 = {0}n, ζ1 = z1 − Hb1. 

(12) 

A. Measurement Update at k = 1 
The characteristic function of the initial state x1 conditioned 

on the initial measurement z1 = Hx1 + v1 is given by 

Using the result in Appendix B, while associating ξi and z in 
the later with (µi, ν) and ζ1, respectively, the integral in (11) 
is evaluated as 

r∞ 

φX1 |Z1   ν  = 
−∞ 

fX1 |Z1  x1|z1  e 
 
jνT x1 

 
dx1, (5) 

¯ 
X1 |Z1 

n+1 
 
ν  =      g1|1 

i=1 

( 
gi (ν) 

 
exp 

(
y1|1(ν) 

 
, (13) 

where fX1 |Z1   x1|z1  = fV  z1 − Hx1  fX1   x1  /fZ1   z1   and where the coefficient functions g1|1(·) are given by 
1 

I
 1 r∞ g1|1 

(
y1|1      ( 1|1 

 − 

fZ1   z1  = fV  z1 − Hx1  fX1  x1  dx1. (6) i gi (ν)  = 
2π jζ1 + ρi + ygi (ν) 

−∞ 

The subsequent derivations can be simplified by avoiding the 
− 

(
jζ1 − ρi + y1|1(ν) 

 −1
l 

.   (14) 

division by fZ1   z1 , thus addressing the unnormalized cpdf 
and its characteristic function defined by 

The arguments of gi    (·) and the exponents in (13) are 
n+1 

y1|1(ν) =      ρ sgn ((ai , ν)) , (15a) 
f̄  x1|z1                   = fX |Z   x1|z1  fZ   z1

 
gi 

 
 
 and 

X1 |Z1 1    1 1 

= fV  z1 − Hx1  fX1   x1  ,   (7) 
 
 

y1|1 

 =1 
 I=i 

n+1 
  

 
 
 

1|1 
 
 

¯ 
X1 |Z1 

 
  
ν  =

 r
∞ 

fV   z1 − Hx1  fX   x1  ejν 

 

 
x1 dx1. (8) 

ei  (ν) = −  
 
 =1 
 
I=i 

ρ |(ai , ν)| + j(bi   , ν), (15b) 

−∞ where, while using (12), for R /= i we have defined 
When the actual (normalized) functions are needed for, e.g., 
computing the state estimates, the normalization factor can be 

1 1 
      − i i /= n + 1, R /= n + 1 
   i 

easily determined by evaluating φ̄ 
 
x1|z1

  
at ν = {0}n, ai   = Ha1 

1 
  1 

Ha1 i = n + 1 (16a) 

i.e., fZ1   z1  = φ̄ 
 
{0}n

  
.  Ha X1 |Z1       1   

 
Using the derivation in Appendix A, the n integrals in (8) 

can be expressed as the single integral 
− i 

i 
R = n + 1 

r∞ 
1|1 

(  
1 − 

1 1 i   + b1 i /= n + 1 
¯ X1 |Z1  ν

  
=  

1 2π φX1 

 
ν − HT η

  
φV 

 
−η

  
ejz1 η dη,   (9) bi = b1 Hai (16b) 

1 i = n + 1 
−∞ 

 
2 



φ ν  = φ 

i  

t φ 
X1 |Z1 

i 

ei i 

i 

X1 |Z1 

n 

n 

y1|1 p 

y1|1 

n 

i  
1|1 

in 2|1 in 2|1 

t 

in 

gi 
i y2|1 

y2|1 

n 

i  
2|1 

n 

1) 

i
 
 

To simplify the notation and subsequent derivations, specif- the ucpdf of x2 given z1 is given by 
ically  to  avoid  the  R  /= i exclusion  in  the  sums  of  
(15), 
the elements in these sums are renumbered sequentially, i.e., 

¯ 
X2 |Z1 

     ¯ 
X1 |Z1 

1|1 

 
ΦT ν

  
φW 

 
ΓT ν

  
(20) 

R ∈ [1, n] for each i-th term. The renumbered vectors ai    will 
be denoted by a1|1. To accommodate subsequent derivations, 

nt 

=     g1|1 
(
y1|1 T 

( 
1|1 T 

i  
the coefficients ρ  in the sums of (15) will be marked differ- i 

i=1 gi (Φ ν) exp yei  (Φ ν) − β|(Γ, ν)|  . 
ently for y1|1(·) and y1|1(·): we will use q1|1  for the former 

gi ei i  

and p1|1 for the latter. The parameters z and ρi in (14) will be 
denoted by c1|1 and d1|1, respectively. Finally, the number of 

The last expression in (20) can be expressed in a form that 
is similar to the one given in (17). For that, we make the 
following observations that lead to the definitions of new and 

i i time propagated parameters and vectors. 
terms in the sum of (13) will be denoted by n1|1 = n+1, while ¯ X2 |Z1 

 
ν
  

is expressed with the same number of terms the number of elements in the sums of (15) will be marked 2|1 1|1 

by n1|1 1|1 as φ̄ 
 
ν
 
. Hence, we define nt = nt   . 

ei   = n. Although at this stage all the counters nei   are 
the same, as will be seen in the sequel, they may be different 2) The coefficient functions g1|1(·), or specifically the pa- 

1|1 1|1 2|1 1|1 
for different i-s. Therefore, we have introduced i-dependent rameters ci and di    , remain as in (18), i.e., ci = ci    , element counters n1|1. Moreover, although the counters n1|1

 d2|1 1|1 2|1 
ei t i = di   , i ∈ [1, . . . , nt   ]. There are only changes 

and n1|1 seem to be related to each other (the former is n + 1 
while the latter are n), they will exhibit irregular changes and 

in the arguments of g1|1(·). For notational consistency 
we will denote the updated coefficient functions g2|1(·) 

thus were introduced separately. 
With these notations and renumbered parameters and vec- 

while remembering that 
g2|1 

 

 
1|1 

tors, φ̄ 
 
ν
  

is restated as i  (·) = gi   (·). (21) 
3) The parameters q1|1 and p1|1 used to define y1|1( ) and 

 
n1|1 y1|1 i i  gi    · 2|1 1|1 

t ei (·) in (19) are also unchanged, i.e., pi = pi   , 
φ̄ ν      =      g1|1 
(
y1|1 

( 
1|1 q2|1 1|1 2|1 1|1 

X1 |Z1 i 
i=1 gi (ν) exp yei  (ν) , (17) i    = qi    ,  i ∈ [1, . . . , nt   ],  R ∈ [1, . . . , nei  ]. 

4) The arguments of y1|1(·) and y1|1(·) are multiplied by 
gi ei 1|1 1|1 

where ΦT , hence affecting the vectors ai     and bi as 
1|1 
ei 1|1 T 2|1 

( 
2|1 

g1|1 
(
y1|1  1  

I( 1|1 1|1 1|1  −1 ygi (Φ ν) = qi    sgn (ai   , ν) , (22a) 

i gi (ν)  = 
2π jci + di + ygi (ν)  

 =1 ( 
1|1 1|1 1|1  −1

l 1|1 
ei 

—  jci − di + ygi  (ν) (18) 
ei  (Φ

T ν) = − 
  
 
 =1 

2|1 
i  |(a 2|1 

i  , ν)| + j(b 2|1 
i , ν),  (22b) 

and where we used the definitions a2|1
 = Φa1|1, b2|1  = 

1|1 2|1 i  1|1 i i 

 
gi  (ν) = 

1|1 ei   
 
 =1 

 
q1|1sgn 

( 
(ai   , ν) 

 

 
, (19a) 

Φbi   , i ∈ [1, . . . , nt   ],  R ∈ [1, . . . , nei  ]. 5) The exponents are a function of an additional element 
−β|(Γ, ν)|. Hence, the number of elements that de- 

2|1 

n1|1 fine  the  new  argument  yei  (·) increase  by  one,  i.e., ei 2|1 1|1 
y1|1 1|1 1|1 1|1 nei =  nei    + 1.  The  parameters  and  vectors  that 

ei  (ν) = −  
 
 =1 

pi   |(ai    , ν)| + j(bi   , ν). (19b) define these new elements are p2|1
 

ei 
= β, a2|1

 
ei 

= Γ, 

It is interesting to note that the initial characteristic function 
in (3) is also expressed in a form identical to that given in 
(17). The initial parameters are: n1 = 1; g1 = 1 (and thus 

i ∈ 1, . . . , n2|1]. For consistency, and to facilitate the 
subsequent manipulations of the characteristic function, 
the number of elements in the sum of the new arguments 

t 1 2|1 there are no y1 arguments); n1 = n; the parameters p1 and ygi  (·) are also increased by one, while introducing the g1 e i 2|1 2|1 the vectors a1 and b1 are given in (4). zero  parameters  q = 0, i ∈ [1, . . . , nt   ]. Hence, 
2|1 
ei 

Remark 3.1: The special cases when some of the conditions with  these  new  elements,  the  arguments  y2|1(·) and 
Ha1 /= 0, i = 1, . . . , n do not hold can be handled 
similarly, 
to yield results that resemble those presented above. These 

ei (·) are defined as 

cases are not presented here for brevity. 
 
 

B. Time Propagation to k = 2 

 
gi  (ν) = 

2|1 ei   
 
 =1 

q2|1sgn 
( 
(ai   , ν) 

 
(23a) 

 
2|1 

2|1 ei    
2|1 

 
2|1 

 
2|1 

Given the time propagation equation x2 = Φx1 +Γw1, while using the r esult of Appendix C, the 



characteristic function of yei  (ν) = −  
 
 =1 

pi   |(ai   , ν)| + j(bi   , ν). (23b) 
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n gi 

n 

i  
k|k k 

n 

i 

gi2 

Xk+1 |Yk 

φ ν  = φ 

t 

i 

yk+1|k i  
k|k 

n 

n n 

r 
 

r 

y gi 

1 

Using all the time propagated and newly defined parameters, 
(20) is restated as 

 
2|1 
t 

and  
 

yk|k (ν) = 

 
 
 
 

k|k 
ei   

 
 
qk|k sgn 

 
 
( 
(ai    , ν) 

 
 
∈ R , (28a) 

φ̄ ν      =      g2|1 (
y2|1 

( 
2|1  =1 

X2 |Z1 i 
i=1 

gi (ν) exp yei  (ν) , (24)  
yk|k 

 

 
k|k 
ei   

 
 

k|k 

 
 

k|k 

 
 

k|k 

where ei  (ν) = −  
 
 =1 

pi    |(ai    , ν)| + j(bi    , ν). (28b) 

g2|1 
(
y2|1 

1 
I(  2|1 

 
2|1 

 
2|1  −1 As will be explained below, y k|k (·) and q k|k are k dimensional 

i gi (ν)  = 
2π jci + di + ygi (ν) 

gi 

vectors. When evaluating gk|k 
( 

k|k
 (·) 

i    
in (27), the argument ( 

2|1 2|1 2|1  −1
l —  jci − di + ygi  (ν) (25) yk|k k|k 

 
with arguments y2|1(·) and y2|1(·) given in (23). Overall, we 

gi  (·) is partitioned as follows: ygi1 (·) is a k − 1 dimensional 
vector constructed from its first k − 1 components, while 
the scalar yk|k (·) is its last component. Also, the source of 

gi ei 

have obtained a form which is similar to the one in (17), 
the  indexes  rk|k

 k|k 

determined after the first measurement update in the previous 
subsection. 

 
C. Summary of Initial Results 

The above derivations demonstrate that the characteristic 
function of the ucpdf of the state xk  at time steps k = 1 and 

i and offsets hi will be detailed in the 
measurement update step. The initialization of this function 
at  k  =  1 is  performed  based  on  the  results  derived  in 
subsection III-A. Now we will perform one time propagation 
and one measurement update and show that the above form is 
maintained at any time step. 

 
A. Time Propagation from k to k + 1 

2 is expressed as a sum of nt  weighted exponential terms. The characteristic function φ̄ 
 
ν
  

of the time propa- 
The number of terms increases during a measurement update 
and are unchanged during a time propagation step. In each 
such term i, the exponents and their weights or coefficients 

gated state xk+1 = Φxk + Γwk  is determined using the result 
in (C.3) of Appendix C and is expressed as 

are  functions  of  a  sum  of  nei   elements.  The  number  nei 
¯ 
Xk+1 |Yk 

     ¯ 
Xk |Yk 

 
ΦT ν

  
φ W  ΓT ν (29) 

of elements normally increases during the time propagation 
step and are unchanged during a measurement update. Those nk|k 

=     gk|k 
(
yk|k T 

( 
k|k T 

observations  provide  the  insight  and  guidance  on  how  to 
construct the characteristic functions at any time step k, as 

i 
i=1 

gi  (Φ ν) exp yei  (Φ ν) − β|(Γ, ν)|  . 

is discussed next. 
 

IV. MEASUREMENT UPDATE AND TIME PROPAGATION: 

The arguments of the coefficient functions gk|k (·) above and 
those of the exponents in (29) are redefined as 

nk|k 

GENERAL CASE 

The initial results presented in the previous section suggest 
gi (ν) = 

ei   
 
 =1 

qk|k sgn 
( 
(Φai    , ν) , (30a) 

the general form of the characteristic function of the ucpdf of 
the state at any time step k given a measurement history. Con- 

k|k 
ei 

yk+1|k (ν) = −      pk|k |(Φak|k , ν)| − β|(Γ, ν)| + j(bk|k , ν). 
ei 

sequently, we assume that at any time step the characteristic 
function of the ucpdf of the state xk given all the data history 

i i  
 =1 

i 
 

(30b) 
up to k, i.e., yk  =   z1 · · · zk   , is expressed as 

k|k 
t 

With these definitions, (29) can be restated as 
k|k 
t φ̄ ν     =       gk|k 

(
yk|k 

( 
k|k ¯ k|k 

( k+1|k 
( 

k+1|k 
Xk |Yk i 

i=1 
gi  (ν) exp yei  (ν) , (26) φXk+1 |Yk   ν  = gi 

i=1 
ygi (ν) exp yei (ν) , 

(31) 
where 

 
gk−1|k−1 

(
yk|k (ν) + hk|k 

  

which clearly has a form similar to (26). Specifically, defining 
the time propagated parameters similarly to the five-steps pro- 
cedure outlined in section III-B including the new parameters 

gk|k 
(
yk|k 

k|k    i 
gi1 i k+1 k k k k+1 k k k 

i gi (ν)  = 
2π r | | | | 

jck|k k|k k|k i = ri   , hi = hi   , the result above can be 
i + di + ygi2 (ν) restated as 

gk−1|k−1 
(
yk|k k|k   

 nk+1|k 
 

k|k 
i 

gi1 (ν) − hi φ̄ ν t 

=        gk+1|k 
(
yk+1|k (ν) exp 

(
yk+1|k (ν)  , — 

jck|k k|k k|k 
 ,   (27) Xk+1 |Zk i gi ei 

i − di + ygi2 (ν) 

 i=1  

(32) 
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φ 

yk+1|k 

n 

i  a , ν k r 
y 

n 

n 

Xk |Zk 

n 

i 

Xk+1 |Yk+1 

φ 

where φ Xk |Yk 

terms in φ i 
term of φ 

φ 

gi 

qk+1|k+1 X1 |Z1 

X1 |Z1 

g 

g 

ν̃ 

where 

gk+1|k 
(
yk+1|k 

measurement updated characteristic function is expressed as 
 

nk+1|k+1 

i gi (ν) ¯ Xk+1 Yk+1 

t 
 
ν  =

 gk+1|k+1 
(
yk+1|k+1(ν)

    
k−1|k−1 

(
yk+1|k k+1|k 

  | i gi 

1 rk+1|k gi1 (ν) + hi i=1 
=    i   

( 
k+1|k+1 

2π  jck+1|k k+1|k k+1|k × exp yei (ν) ,   (36) 
i + di + ygi2 (ν) 

gk−1|k−1 
(
yk+1|k k+1|k   

 ( 
rk+1|k gi1 (ν) − hi gk+1|k+1 yk+1|k+1 

        i   
i gi (ν) — 

jck+1|k k+1|k k+1|k 
    (33)  ( 

i − di + ygi2 (ν) 


 gk|k yk+1|k+1 k+1|k+1 

1 rk+1|k+1 gi1 (ν) + hi 
=     i   and 2π   

jck+1|k+1 k+1|k+1 k+1|k+1 

i + di + ygi2 (ν) 
 

 
gi (ν) = 

 
k+1|k 
ei   

 
qk+1|k sgn 

( 
k+1|k 

( i ) 
 
∈ R , (34a) 

k|k 
k+1|k+1 
i − 

( 
k+1|k+1 
gi1 

(ν) − h k+1|k+1    
 

i 
 

 
 
,   (37) 

 =1 jck+1|k+1 k+1|k+1 k+1|k+1  

 
yk+1|k 

k+1|k 
ei    

k+1|k 
 

k+1|k 
 

k+1|k 
 

and 
i − di + ygi2 (ν) 

ei (ν) = −  
 
 =1 

pi |(ai , ν)| + j(bi , ν). 
(34b) 

 
 

yk+1|k+1 

 
 

k+1|k+1 
ei   

 
 

k+1|k+1 

 
( 

k+1|k+1 

 
The  number  of  terms  that  define  φ̄ 

 
·
   

in  (32)  is 
gi (ν) =   

 =1 
qi sgn (ai , ν) ,  (38a) 

identical to that of φ̄ 
Xk+1 |Zk  

·  in (26). However, the number yk+1|k+1 
k+1|k+1 
ei    

k+1|k+1 
 

k+1|k+1 

of elements needed to define the arguments of those terms has 
increased by one, i.e., nk+1|k  = nk|k + 1. 

ei (ν) = −  
 
 =1 

pi |(ai , ν)| 

ei ei 

+ j(bk+1|k+1, ν) .   (38b) 
B. Measurement Update at k + 1 

The measurement zk+1 = Hxk+1 + vk+1 is processed next 
The above results clearly show that the form of the character- 
istic function proposed in (26-28) for the time step k is also 

to determine φ̄ 
 
·
 
, where yk+1 = 

 
z1 · · · zk+1

 
. maintained at k + 1. 

Using the general result in Appendix A, V. CONDITIONAL MEAN AND ESTIMATION ERROR 
¯ 
Xk+1 |Yk+1 

r∞ 

 
ν
  

= (35) VARIANCE 

The minimum conditional variance estimator of xk  given 
1 φ̄ 

 
ν − HT η

  
exp 

(
−γ|η| + jz η   dη, the measurement sequence yk = z1 · · · zk is the conditional 

2π Xk+1 |Yk 
k+1 mean of xk given yk . It can be determined by evaluating the 

−∞ characteristic function of (26) and its derivatives at ν = {0}n, 
¯ Xk+1 |Zk 

 
·
  

was determined in (32). This integral was or as ν → {0}n. In this section we show that φ̄ 
 
·
   

is 
solved in (B.2) of Appendix B. This result indicates that each twice continuously differentiable and give explicit expressions 
term in the sum of φ̄ 

 
·
  

in (32) generates nk+1|k + 1 for the conditional mean and the estimation error variance. 
Xk+1 |Zk 

ei The continuity of the first two derivatives of φ̄ 
 
·
  

is 
¯ Xk+1 |Yk+1 

 
ν
 
:  the  index  rk+1|k+1  indicates  which proven by induction. The characteristic function φ̄ Xk |Yk  ν  is 

¯ 
Xk+1 |Zk 

 
·
  

generated the new ones. In addition, this 
X1 |Z1 

given by the convolution integral in (11). Using the definitions 
parent term is called with an offset, denoted as Qi in (B.2). In 
the final result, this offset will be denoted as hk+1|k+1. Finally 

in (4) and (12), (11) is rewritten as 
i 

we note that the coefficient function of the exponents in (B.2) 
have two input arguments: the sum in the numerators (with the 

¯ 
X1 |Z1 

 1   
r∞

 
= 

2π 

n 

n 
e−

 αi |ν̃ i −η|e −γ|η|+jz1 η dη (39) 

offset) and the sum in the denominators. Grouping those two 
arguments into one, we denote the input vector to the updated 
coefficient function gk+1|k+1(·) as yk+1|k+1(·). Clearly, each 

i=1 
−∞ 

where ν̃i  [', (µi, ν) and ν̃  = 

 
ν̃1 · · · 

 
 

ν̃n 
lT . The integrand 

i ei of (39) is a continuous function of η and ν̃i∀i = 1, . . . , n. 
measurement update increases the dimension of this argument, 
and hence the deduction in (28) that yk|k (·) and qk|k  are k 

gi i  

dimensional vectors. Similarly, the updated yk+1|k+1(·) and 
i will be of dimension k + 1. 

Moreover, it can be shown that its first and, by a change of 
variables, its second order partial derivatives with respect to 
any ν̃j are piecewise continuous and bounded. Consequently, 
φ̄        ν̃   is twice continuously differentiable with respect to 

After the integration, reordering terms and defining updated 
parameters  similar  to  the  procedure  outlined  in  III-A,  the 

ν̃  [13]. Since ν is a linear function of ν̃ , φ̄ 
continuously differentiable with respect to ν. 

 
ν
  

is twice 

 
5 



  
φ 

n 

φ g gi ei 
X1 |Z1 

X1 |Z1 

X2 |Z1 

n 

i 

ei 

φ 
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n 

X2 |Z2 

n 

X2 |Y2 

φ 

t 

X2 |Z2 

  

Xk |Yk 

Xk+1 |Yk+1 
Xk |Yk 

Xk |Yk 
  

φ 
Xk |Yk 

i  

i  

φ 

T 

 

T 

T 

g y 

ν 

The time propagated characteristic function at k = 2 of (20) well  defined  constants  that  satisfy  |si | = 1.  From  (26-28), 
is restated as 

φ̄ 

 

  
ν  = φ̄ 

  
ΦT ν  e−β|ΓT ν|. (40) 

¯ 
Xk |Yk 

 
·
  

along this direction is given by 
k|k 
t X2 |Z1 X1 |Z1 ¯ Xk |Yk  ν̂  = k|k 

( i yk|k ( ν̂) exp 
(
yk|k ( ν̂) , (42) 

Since, as it was shown above, φ̄ 
 
ν
  

is twice continuously i=1 
differentiable,  φ̄ 

 
ΦT ν

   
is  also  twice  continuously  dif- k|k 

ferentiable for any transition matrix Φ. Clearly, φ̄ 
 
ν
  

is where the functions gi    (·) are given in (27). Their arguments, 
defined in (28), are 

continuous, being a product of two continuous functions. How- T 

ever, since the first derivative of e−β|Γ ν| is not continuous k|k 
ei at ν = {0}n, the associated pdf fX2 |Z1   x2|z1  does not have 

ygi  ( ν̂) =      qi    s  = ygi  (ν̂). (43) 
any moments. This implies that we cannot compute a priori 
estimates of the state x2 given only the past measurement z1. 

k|k  =1 k|k i k|k  

 
k|k 

The characteristic function at the second measurement up- 
date given the measurement history y2 = {z1, z2}, while using 
the explicit form of (40) is given by 

Since the vector ν̂  is constant, the arguments ygi  (·) and thus 
the coefficient functions gk|k (·) are constant along the chosen 
direction. 

Similarly, the arguments yk|k (·) of the exponents in (42), 
¯ 
X2 |Y2 

r∞ 

 
ν
  

=
 defined in (28), are manipulated as follows 

k|k 
ei 1 φ̃ (ν − HT η)e−β|Γ ν−HΓη|e−γ|η|+jz2 η dη,     (41) k|k k|k k|k k|k 

2π X2 |Z1 

−∞ 
yei  ( ν̂) = −  

 
 =1 

pi    |(ai    , ν̂)| + j(bi    , ν̂) (44) 

where  φ̃ (ν)  [',  φ̄ 
 
ΦT ν

 
.  Note  that  if  HΓ  =  0, k|k 

ei 
k k k k 

 
k k k k 

X2 |Z1 X1 |Z1 =  −      p |   i | 
i 
|  | 

the term e−β|Γ ν|  would come out of the integral in (41).  =1 i   s (ai    , ν̂) + j(b , ν̂) =  (ȳei  (ν̂), ν̂), 
Consequently, in this case φ̄ 

 
ν
   

would  not  be  contin- 
uously differentiable with respect to ν, and there would be 
no minimum variance estimate of xk  given yk  for all k ≥ 2. 

where we have defined  
 
 

k|k 
ei 

Therefore, HΓ /= 0 is a necessary condition for the 
continuous 

ȳk|k (ν̂ ) = −     pk|k si ak|k + jbk|k . (45) 

differentiability of φ̄ 
 
ν
  

and the existence of the desired 
ei i i i 

 =1 
estimate of the state xk  at any time step k. k|k 

It  was  shown  earlier  that ˜ X2 |Z1 (ν − HT η) is  twice Since ν̂  is constant, so is the expression (ȳei  (ν̂), ν̂), making k|k 
continuously  differentiable  with  respect  to  ν.  Moreover, yei  (·) of the exponents linear in   along the chosen direction. 
e−β|Γ ν−HΓη| has a piecewise continuous and bounded first Using the above results, (42) can be restated as 
derivative with respect to ν. Hence, assuming HΓ /= 0, the in- tegrand in (41) can be shown to have piecewise continuous and φ̄ nk|k  

 ν̂   =     gk|k 
(
yk|k 

( 
k|k 

bounded first and second order partial derivatives with respect 
Xk |Yk i 

i=1 
gi (ν̂) exp  (ȳei   (ν̂), ν̂) . (46) 

to any ν. This implies that φ̄ 
 
ν
  

is  twice  continuously The conditional mean of the state xk  given the data se- 
differentiable with respect to ν [13]. 

In  a  recursive  manner,  the  continuity  of  the  first  two 
derivatives of the characteristic function can be shown to be 

quence yk  is given by 

1 

 / 
∂φ̄ 

 
 ν̂

  \T 
 
 

maintained when propagating from any time step k to time 
step k + 1, as it was maintained in going from times step 1 to 

x̂ k = E[xk |yk ] = j fYk 
 
yk 

       Xk |Yk   

∂( ν̂)     
   
 =0 

.  (47) 

2 presented above. Assuming that φ̄ 
 
ν
  

of (26) is twice The  pdf  fY    yk     needed  to  normalize  the  above  result  is continuously differentiable, one could use the above arguments k
 

to show that so is φ̄ 
Having established that φ̄ 

 
ν
 
.
  
  
ν   is twice continuously 

determined by evaluating φ̄ 
 
 ν̂

  
at   = 0. Using (46) 

nk|k 
Xk |Yk 

differentiable, the explicit form of the pdf of the measurement 
history,  the  conditional  mean,  and  conditional  variance  is 

fYk   yk   = φ̄ 
 
 ν̂

   
=  

 =0 

t   
 
i=1 

k|k 
i 

( 
k|k 
gi (ν̂) . (48) 

determined  from  (26-28)  by  evaluating ¯ 
Xk |Yk 

 
ν
   

and  its The derivative of φ̄ 
 
·
  

is determined by differentiating 
derivative as ν → {0}n. We choose ν =  ν̂ , where     is a (46). Since gk|k 

(
yk|k

 k|k 
positive scalar such that    → 0 and ν̂  is any fixed direction i gi (ν̂ ) and (ȳei  (ν̂), ν̂) are constant, this 
in the ν domain for which (ak|k , ν̂) 
=/ 

0, ∀   (i, R). This derivative can be easily determined. Evaluating it at     = 0 

condition avoids the discontinuity issues of sgn 
(
(ak|k ,  ν̂)

 
 

yields the minimum conditional variance estimate 
k|k 

when  evaluating ¯ Xk |Yk and  its  derivatives.  With  this nt   1   k|k 
( k|k k|k choice  of  ν,  sgn 

(
(ak|k ,  ν̂)   =  sgn 

(
(ak|k , ν̂)   [',  si are x̂ k = 

j f y 
gi ygi  (ν̂) ȳei  (ν̂). (49) 

i i  Yk      k    i=1 
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k 

k 

k 

ρ i
j 

v 
w

 
x̃ 3

 
x̃ 2

 
x̃ 1

 

t 

i 

The second conditional moment of xk given yk is determined  Estimation Error 
by 

 
  Error Standard Deviation ( ±σ) 

1 ∂2φ̄ 1  
 ν̂

   
 

E[xk xT |yk ] =   Xk |Yk  
  . (50) 0 

k j2 fY    yk    ∂( ν̂)∂( ν̂)T 
   
 =0 

The second derivative in the above equation is easily computed 
by twice differentiating (46) to yield 

E[xk xT |yk ] = (51) 

nk|k 

−1 
1 2 3 4 5 6 7 8 

1 
 
 

0 
1 gk|k 

(
yk|k 

  (  
k|k   (  

k|k 
 T 

j2 fYk   yk   i=1 gi (ν̂) ȳei  (ν̂ ) ȳei  (ν̂) . −1 
1 2 3 4 5 6 7 8 

1 
Finally, from (49) and (51), the variance of the estimation 
error x̃k   = xk  − x̂ k   can  be  evaluated  as  E[x̃ k x̃ T |yk ] = 0 
E[xk xT |yk ] − x̂ k x̂ T . 

k k 
−1 

VI. THREE-DIMENSIONAL STATE ESTIMATOR 

The  performance  of  the  proposed  estimator  was  tested 
numerically. The system parameters were chosen as follows: 

1 2 3 4 5 6 7 8 
Step # 

 
(a) Estimation Errors 

   
1.4 −0.6 −1.0


 

  
0.1


 

α1
 

 
0.1


 

 
 

  ρ12 

 
 

ρ13 ρ23 

Φ = −0.2 1.0 0.5 , Γ =  0.3 , α2 = 0.08 ,
  1

 
0.6 −0.6 −0.2 −0.2 α3 0.05 

H =     1.0 0.5 0.2
l 
, β = 0.1, γ = 0.2. 

The system has stable eigenvalues at 0.7 ± 0.3j and 0.8. It 
is observable and complies with the necessary condition that 
HΓ /= 0. 

The simulation results are depicted in Fig. 1, showing the 
estimation errors in 1(a), and the cross-correlation, process 
and measurement noises in 1(b). It can be clearly observed 

0 
 
 
−1 

1 2 3 4 5 6 7 8 
2 

 
 

0 

that the estimation error standard deviation depends on the −2 1 2 3 4 5 6 7 8 
measurement sequence. Specifically, the standard deviation 2 
increases when a large measurement noise is encountered, e.g., 
at time step #4. 0 

       

VII. CONCLUSIONS 

For a linear discrete-time system with additive Cauchy 
measurement and process noises, an  analytic  recursion  of 
the characteristic function of the unnormalized condition pdf 
was determined for the n-vector state estimator. It was then 
shown that this characteristic function is twice continuously 
differentiable, allowing the determination of the conditional 
mean and the conditional second moment, from which the 
conditional error variance is determined. This conditional 
mean constitutes the Cauchy estimator for the multivariable 
system. The estimator was then evaluated numerically for a 
third-order example. 
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     

n   g Qi +      Q sgn (ξ  − ξi) 
APPENDIX 

A. Characteristic Function of an Unnormalized Conditional 

 
=1 

 I=i  
× n 

PDF Given a Scalar Measurement 
For  the  linear  measurement  equation  z  =  Hx + v  = 

i=1 hixi +v, the characteristic function of the unnormalized 

 jz + ρi +   
 

 

  
 =1 
 

I
=
i 

 
 

n 

ρ sgn (ξ  − ξi) 
 

  

conditional density function of the state is given as 
∞ 

T 

g −Qi +      Q sgn (ξ  − ξi)  
   =1 

 
 I=i 

 
¯ 

X|Z 
 
ν
  

=
 

−∞ 

fX  x fV 
  
z − Hx ejν xdx. (A.1) − 

jz − ρi + 
n   

 =1  I=i 

ρ sgn (ξ  − ξi) 
.   (B.2) 

  
 

The above resembles a Fourier transform of a product of two 
functions: fX  x  and fV  z − Hx . Using the dual convolu- 
tion property, this integral can be solved by a convolution in 
the ν domain between the characteristic function φX  ν   of 

 

C. Time Propagation of Characteristic Functions for Linear 
Systems 

Assume  that  at  step  k  the  state  pdf  and  characteristic 
fX x  and the characteristic function of fV  z − Hx , which function are given by f 

Xk  xk 
  and φ 

Xk  νx
  , where νx ∈ Rn. 

we denote by φ̂V   ν , i.e. 
r∞ 

The goal is to determined the characteristic function of the 
propagated state at time step k + 1, given by xk+1 = Φxk + 

¯ 
X|Z 

 
ν
  

= 
1 
(2π)n 

−∞ 

φX   ν − σ  φ̂V 
 
σ
  

dσ. (A.2) Γwk . It is assumed that xk  and the process noise wk  ∈ Rm 
are independent random vectors. The pdf and characteristic 
function of the latter are fW  w  and φW  νw  , respectively, 

The characteristic function φ̂V   ν  is determined as follows where  νw   ∈ Rm.  Φ ∈ Rn×n   and  Γ ∈ Rn×m   are  known 
r∞ / n \ matrices,  with  |Φ|  

=/ 
0.  Due  to  the  linearity  of  the  state 

φ̂V   ν  = fV 

−∞ 

z −     hixi 
i=1 

ej i=1 νi xi dx. (A.3) dynamics, the pdf of xk+1 is given as [14] 

fXk+1  xk+1 = 
Substituting (A.3) into (A.2) and carrying out the resulting n − 1 nested integrations involving n − 1 delta functions, it is r∞ ( fXk   Φ xk+1 − Φ  Γwk  fW  wk  dwk .  (C.1) 

 
straight forward to show that 

 Φ−1  −1 −1 

−∞ 

 
¯ 
X|Z 

 
1 

(ν) = 2π 

r∞ 

φX   ν − HT η  φV (−η) ejzη dη.   (A.4) 
Its characteristic function is given by 

r∞ r∞ 
−∞ 

B. Integral of an Exponent of Absolute Values 
φXk+1   ν  = Φ− 1

    
−∞ −∞ 

fXk 
(
Φ−1xk+1  − Φ−1 

T 

Γwk 

The  measurement  update  stage  of  the  Cauchy  estimator 
entails evaluating a convolution integral of the following form 

× fW  wk   dwk ejν 
xk+1 dxk+1.  (C.2) 

r∞ 

I = g 
/ n \ 
  

Q sgn (ξ  − η) 
 =1 

Interchanging the order of integration, and using the substitu- 
tion xk+1 = Φxk + Γwk   ⇒ dxk+1 = |Φ|dxk , the integral in 
(C.2) is solved as 

−∞ 

× exp 
I/ n \ 

− ρ |ξ  − η| 
 =1 

l 

+ jzη 

 
 
dη,   (B.1) 

φXk+1 

 
ν
  

= φX  
 
ΦT ν

  
φW 

 
ΓT ν

  
. (C.3) 
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Abstract—An efficient recursive state estimator is developed for two- 
state linear systems driven by Cauchy distributed process and measure- 
ment noises. For a general vector-state system, the estimator is based 
on recursively propagating the characteristic function of the conditional 
probability density function (cpdf), where  the  number  of  terms  in 
the sum that expresses this characteristic function grows with each 
measurement update. Both the conditional mean and the conditional 
error variance are functions of the measurement history. The proposed 
two-state estimator reduces substantially the number of terms needed to 
express the characteristic function of the cpdf by taking advantage of 
relationships not yet developed in the general vector-state case. Further, 
by using a fixed sliding window of the most recent measurements, the 
improved efficiency of the proposed two state estimator allows an accurate 
approximation for real-time computation. In this way, the computational 
complexity of each measurement update eventually becomes constant, 
and an indefinite number of measurements can be processed. The 
performance of the Cauchy estimator was demonstrated numerically. 

 
 
 

I. INTRODUCTION 

Dynamic processes involving uncertainty are frequently encoun- 
tered in fields ranging from engineering and science to economics and 
finance. It is often assumed that the uncertainties are described by the 
Gaussian probability distribution, mainly because modern methods 
and algorithms are able to handle such systems very efficiently [1]. 
However, in many applications the underlying random  processes 
have an impulsive character producing deviations of high amplitude 
and small duration much more often than the Gaussian assumption 
permits [2]. Examples of such processes include radar and sonar noise 
[3] and disturbances due to air turbulence [4]. 

Impulsive uncertainties were shown to be better described by 
heavy-tailed distributions, such as the symmetric alpha-stable (SαS) 
distributions [5]. These distributions are described not by their prob- 
ability density functions (pdfs), but by their characteristic functions 

α parameter for the in-phase component of a time series of sea clutter 
in radar in [6] was calculated to be α ≈ 1.7. A framework based on 
these stable distribution models was developed in [9] and shown to 
have significant improvements in performance against heavy tailed 
noises. 

The apparent robustness and adaptability of the Cauchy probability 
model motivated the derivation of a sequential estimator for linear 
scalar systems [10, 11], and subsequently for general vector-state 
systems driven by Cauchy noise [12, 13]. The estimator for general 
vector-state systems suffers from severe growth in numerical com- 
plexity, limiting its use to a small number of measurement updates 
and states. The aim of the current work is to develop an efficient 
two-state estimator to process measurements more quickly, and to 
arrest the growth in complexity in order to implement the Cauchy 
estimator for an arbitrary number of time steps. 

The methodology in [12, 13] is based on finding the characteristic 
function of the conditional pdf of the state given the measurement 
history. This work follows that same procedure, and by exploiting 
certain relationships for the two-state structure, we can greatly reduce 
the complexity of the algorithm. The proposed algorithm was derived 
inductively by working out the first three measurement updates, and 
then deducing the general update process. In this paper, we present 
the first two measurement updates, followed by the general recursion. 
It has been checked against the results in [12, 13]. 

The CF is expressed as a sum of terms, each of which has two 
components: a coefficient function denoted by G and an exponential 
function with argument E . These functions are shown to have known 
structures that persist across measurement updates, and parameters 
that are contained in a set of fundamental arrays. The essence of this 
paper is in deriving this structure and populating the arrays, which 
allows for a drastic reduction in the complexity of the algorithm. We 

(CFs). They are of the form φ(ν) = e−σ |ν|α +jµν , where σ is the begin by presenting the problem in Section II, and performing the first 
scaling parameter, µ is the median, ν is the spectral variable, and the 
characteristic exponent α determines the type of distribution: α = 2 
implies the Gaussian distribution, and α =  1 implies the Cauchy 
distribution. 

Estimation assuming Cauchy distributed noises has shown im- 
proved performance over Gaussian estimators when faced with im- 
pulsive noises. For estimating the direction of arrival of a signal 
to a sensor array in [6], maximum likelihood estimators designed 
assuming Cauchy distributed noises were shown to exhibit perfor- 
mance very close to the Cramèr-Rao Bound against SαS noises 
with characteristic exponents 1 ≤ α ≤ 2. Similar performance was 
observed in various applications, including processing data in a multi- 
user communication network [7] and radar glint [8]; in particular, the 

This work was partially supported by Air Force Office of Scientific 
Research, Award No. FA9550-09-1-0374, and by the United States - Israel 
Binational Science Foundation, Grant 2008040. 

J. H. Fernández is with the department of Mechanical and Aerospace 
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Email: jhf@seas.ucla.edu. 
J. L. Speyer is with the department of Mechanical and Aerospace Engi- 

neering, University of California, Los Angeles. 
Email: speyer@seas.ucla.edu. 
M. Idan is with the Faculty of Aerospace Engineering, Technion, Haifa, 

Israel. Email: moshe.idan@technion.ac.il. 

measurement update for a general vector-state system in Section III. 
Then, in Section IV, we assume a two-state system and derive the pro- 
posed estimator structure for the first measurement update, followed 
by the first time propagation step in Section V. Section VI derives 
the proposed estimator structure for the second measurement update, 
and Section VII presents the general measurement update recursion 
algorithm. Section VIII discusses the finite horizon approximation of 
the full information estimator by using a fixed window of the most 
recent measurements. Finally, numerical examples are presented and 
discussed in Section IX, and concluding remarks are given in Section 
X. 

 
 

II. PROBLEM  FORMULATION 

Consider a discrete time, linear system described by 
 

x(k + 1) = Φx(k) + Γw(k), (1a) 
z(k) = Hx(k) + v(k), (1b) 

where x(k) ∈ Rn is the state vector, u(k) is a scalar deterministic 
input, z(k) is a scalar measurement, and w(k) and v(k) are scalar 
independent Cauchy distributed process and measurement noise in- 
puts. The noise inputs have medians at zero and scaling parameters 

mailto:jhf@seas.ucla.edu
mailto:speyer@seas.ucla.edu
mailto:speyer@seas.ucla.edu
mailto:moshe.idan@technion.ac.il
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\  

φ 

1|1 

1|1 

T 

∞ 

1 
h 

2 
 

 
of β and γ, respectively, so that their pdfs are given by 

β/π 
systems using the characteristic function of the conditional pdf were 
developed and presented in [11, 14]. An algorithm for a multivariate 

fW  w(k)  = 
w2(k) + β2 

γ/π 

, (2a) Cauchy estimator is presented in [12, 13] and summarized here. 
The CF of the initial state conditioned on the first measurement is 

fV   v(k)  = v2(k) + γ2
 
. (2b) given by the vector integral 

The characteristic functions of these pdfs are 

φW (σ) = e−β|σ|, (3a) 

φV (σ) = e−γ|σ|, (3b) 

where σ is the scalar spectral variable. 

r∞ 

φ1|1(ν) = 
−∞ 

 
 
fX1 |Z1 

 
(x(1)|z(1))ejν 

 
x(1)dx(1). (9) 

The initial condition is assumed to be a product of scalar, inde- 
pendent Cauchy distributed random variables denoted by 

n 

The conditional pdf is computed from the joint distribution of x(1) 
and z(1) using Baye’s Theorem [1] as 

fX1 (x(1)) = 
n

 
i=1 

  αi/π   . (4a) 
(xi(1) − x̄i(1))2 + α2

 

fX1 |Z1 (x(1)|z(1)) = 
fX1 ,Z1 (x(1), z(1)) 

fZ1 (z(1)) 
fZ1 |X1 (z(1)|x(1))fX1 (x(1)) 

Its characteristic function is given by = 
fZ1 (z(1)) 

n fV (z(1) − Hx(1))fX1 (x(1)) φX1 (ν) = 
n 

e−   |  |
 = .   (10) 

f (z(1)) 
i=1 αi νi +jx̄i (1)νi 

Z1 

( n \ 
= exp — αi |νi| + jx̄(1)Tν 

i=1 

,   (4b) Then, (9) can be expressed as 

where νi is an element of ν ∈ Rn. The algorithm’s structure is greatly 
simplified by assuming that the median in (4b) is x̄(1) = 0, i.e., the 
initial condition is centered at the origin. To preserve the generality 
of the initial condition (4b), the system in (1) can be decomposed 
into two systems, a stochastic variable initialized at the origin and 

 
 

φ1|1(ν) = 
1 

r 

fZ1 (z(1)) 
−∞ 

 
fV (z(1) − Hx(1)) 

 
jνTx(1) 

 
 
 
 
 

¯ 
1|1 

 
 
 
 
 
(ν) 

driven by w(k), and a deterministic system initialized at x̄(1), such 
that 

× fX1 (x(1)) e dx(1) = 
fZ1 

,   (11) 
(z(1)) 

x(k) = x̄(k) + x̃(k), (5a) where φ̄ (ν) is the characteristic function of the unnormalized cpdf 
z(k) = z̄(k) + z̃(k). (5b) (ucpdf). Note that, since z(1) is known, fZ 1 (z(1)) is a constant; since 

The dynamics and measurement equations for x̃ and x̄ are given by φ1|1|ν=0  = 1, then φ̄     | = f 1 (z(1)). 
1|1 ν=0 Z 

x̃(k + 1) = Φx̃(k) + w(k), z̃(k) = Hx̃(k) + v(k), (6a) Using the dual convolution property [15], φ̄ (ν) in (11) can be 

x̄(k + 1) = Φx̄(k), z̄(k) = Hx̄(k). (6b) 
expressed as n convolution integrals in the ν domain between the 
characteristic functions of fV (z(1) − Hx(1)) and fX1 (x(1)). The 

Then, the proposed algorithm can be applied to the system in (6a), 
and the deterministic part in (6b) can be used to recover the state 
estimate for x(k) from the estimate of x̃(k) by using (5a). Therefore, 
the presentation of the algorithm will assume that x̄(1) = 0 in (4b) 

CF of fX1 (x(1)) is given in (4b). The CF of fV (z(1) − Hx(1)) is 
denoted φ̂V (ν) and is given by 

 
r∞ r∞ n 

without loss of generality. 
Finally, the measurement history used in the estimation problem 

formulation is defined as 

φ̂V (ν) = · · · 
−∞ −∞ 

fV (z(1) − 
'\" 

hixi(1)) 
i=1 
 n 

Zk := {z(1), . . . , z(k)}. (7) × ej
 

i=1 νi xi (1)dx1(1) . . . dxn(1).  (12) 

The objective is to derive the conditional mean estimator for this 
system.  To  do  this,  we  find  the  CF  of  the  pdf  of  the  state  at 
time k given the measurement history Zk , denoted as φk|k (ν). The 
next section begins with the CF of the pdf conditioned on a single 
measurement. 

 
III. FIRST  MEASUREMENT  UPDATE 

Begin with the first measurement update at k = 1 by taking a 
noisy measurement of the Cauchy distributed initial state as 

z(1) = Hx(1) + v(1). (8) 

In order to proceed, we need some assumptions about the measure- 
ment vector H �  [h1 . . . hn]. The first is that at least one element of 
H is nonzero, i.e. there exists an i such that hi /= 0. This assumption 
is a prerequisite for observability of the state. The second assumption 
is that this nonzero element is hn, which has no effect on generality 
[16]. 

To  carry  out  the  integration  in  (12),  perform  the  change  of n 

variables: ξ = z(1) − ), hixi to write 
i=1 

Here,  x(1)  and  v(1)  are  the  Cauchy  random  variables.  For  a 
scalar system, i.e. x(1) ∈ R1, the conditional mean estimator has 
been derived and is presented in [10]. For vector-state systems, an 
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z(1) − ξ − 
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hixi(1) 
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i=1 dξ 

 
 

(13a) 

approach based on determining the characteristic function (CF) of the 
conditional pdf (cpdf) is used. Initial results for estimation of scalar 

dxn(1) = |hn| . (13b) 
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This allows us to manipulate (12) as Rewrite (18) using (3b) and (4b) as 
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dσ,   (19a) 

j i=1 νi xi (1)+νn 
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z(1)−ξ−  i=1 hi xi (1) 

hn dξ 
−∞ dx1(1) . . . dxn−1(1) 

|hn| ρ  = α 
 
E HT

   
for f, 1, . . . , n ρ = γ, (19b) 

j νn z(1) 

 r∞  


 ∈ { } n+1 

= e hn 

|hn| 
 fV 

−∞ 

(ξ) e−j hn 
ξ dξ µ  = 

E ν 
E HT 

for f, ∈ {1, . . . , n} µn+1 = 0, (19c) 

th  r∞ r∞ (  \ 
 where  E    is  the  f, row of the n-dimensional identity matrix. Note 

j  n−1  νi − h1 νn xi (1) that the µ are scalars linear in ν, i.e. inner products of ν with given 
×    · · · e i=1 hn dx1(1) . . . dxn−1(1) .    (14)   

vectors. The solution to (19) is given in [12, 13] as 
−∞ −∞ 

 
 Here, the left parenthesis equals the CF of fV  if the spectral variable 

is − νn . The right parenthesis is a product of Dirac delta functions, 
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−1 

Using  φX1    of  (4b)  and  φ̂V    of  (15),  we  can  express  the  first 
measurement update ucpdf’s CF using the dual convolution property 
[15] as 

× 
jz(1) + ρi 
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.   (20) 

−∞ −∞ 
r∞ r∞ 

 =1 
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(2π)n 

−∞ 

· · · 
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φX1 (ν − σ) φ̂V (σ)dσ Thus, the measurement update process produces a sum of exponential 
terms with coefficients in the brackets. For the two state system, as 
will be shown, the bracket term can be reduced to a simple form 

=  (2π) n−1 r∞ r∞ 
· · · φX1 

j σn z(1) 
(ν − σ) e hn φV 

( 
σn 

\ 
− that is a polynomial of sign functions. Next, we present a structure 

for expressing (20) for the two-state system that can be extended to (2π)n |hn| 
−∞ −∞ 

hn 
subsequent measurement updates. 

n−1 

× δ 
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hi 
i h 

\ 
σn     dσ1 . . . dσn−1 dσn. (16) 

 

 IV. TWO-STATE ESTIMATOR  STRUCTURE  FOR  THE  FIRST 
i=1 

n 
 

Integrating over σ1 . . . σn−1  is simple due to the delta functions in 
(16), and results in a single integral over the scalar σn: 

MEASUREMENT  UPDATE 

In the previous section we considered a system with a state vector 
of general order n, and an algorithm for the general vector-state 
system is presented in [12, 13]. However, that algorithm suffers from 

¯ 
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(ν) = 
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2π |hn| 

r ( 
σn

 

 
 
  

σn 

a very aggressive growth in computational complexity with each new 
measurement update. For a second order system there are certain pat- 
terns and algebraic relationships that allow for significant reductions 

× φX1 

−∞ 
ν1 − h1 hn 

, . . . , νn−1 − hn−1 hn 
, νn − σn in numerical complexity and allow the estimator to run effectively 

over a large number of measurement updates. There are two main 
j σn z(1) 

× e hn φV 
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σn 
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hn \ 
σn 
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σn 
\ 

aspects to this simplification: a way of expressing and indexing 
vectors that multiply (as inner products) the spectral vector ν in the 
exponential argument in (20); and a set of algebraic relations that 

= 1 
2π |hn| 

φX1 

−∞ 

ν HT σn
 

hn 
ej hn z(1)φV

 — 
hn 

dσn. can be used to simplify the coefficients of the exponential functions. 
Both of these aspects are addressed here for the first measurement 

(17) 
 

Finally, we have a convolution integral involving the CF of the pdf of 
the state, and the CF of the measurement. This result indicates that 
the ucpdf’s CF for a system of arbitrary (finite) order conditioned 
on a scalar measurement can be determined from this single, scalar 
convolution integral. A simple change of scalar variables σ = σn/hn 
and dσn = dσ |hn| gives the final form 

r∞ 

update in (20) presented above. In Section VI the second update is 
presented, indicating by induction the general measurement update 
and time propagation recursions given in Section VII. 

 
 

A. Exponential Argument 
Consider the arguments of the absolute value terms in (20). The µ 

scalars are defined in (19c) as scaled inner products of ν with vectors 
we call fundamental directions. For the first measurement update, 

¯ 
1|1 

(ν) =  
1

 
2π 

−∞ 

φX1 (ν − HTσ) φV (−σ) ejz(1)σ dσ. (18) these fundamental directions are the rows of the n×n identity matrix. 
For the two-state system, the set of fundamental directions from the 
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initial condition is B1|0   = r
E1

l 
E2 

r
1  0

l 
= 0   1 . In the subscript of 

 
Using (25) and the definitions for ρ  from (19b) in (20) yields 

B1|0, the first element denotes the time step, and the second element 
denotes the number of measurements that have been processed. 

Inner products are linear operations, and hence a difference of inner 
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products with a given vector is also an inner product. This new inner 
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is the same for any real, 2 × 2 B1|0. Using a superscript on B1|0  to    
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denote its f,th  row, apply this notation to the definitions in (19c) to 
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The key here is to recognize that the term in parenthesis in the × exp E ν HAν  + j E ν |E HT| |E HT| E  HT 

numerator of (21) is a matrix minus its own transpose, which implies 
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0 c
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(ν) 
that it is antisymmetric, i.e., that BmTB − B T Bm   = 
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γ      α1   z(1) 

\
 

1|0    0 1|0 1|0 −c   0 × exp    − T 
|E2ν| − 

T 
|HAν| + j T 

E2ν 
for  some  c  ∈ R.  This  constant  c can  be  computed  and  pulled 
out of the matrix, which allows us to express any two-dimensional 

|E2H | + G3
 

|E2H   | E2H 

antisymmetric matrix as cA where A = 

verified to be 

r  
0   1

l 
−1    0 

and c can be 
1|1(ν) exp (−α1 |E1ν| − α2 |E2ν|) .    (26) 

Notice that each of the three terms involves only two of the three 
fundamental directions. 

The efficiency of the proposed two-state estimator is achieved by 
c = −B 

 

 
 

Hence, we can write (21) as 

ABmT. (22) both keeping track of which directions are used in each term, as well 
as the scalar coefficients that multiply the absolute value functions 
and the scalar coefficients in the imaginary part of the argument of 
the exponential. The most important of these is an array of integers 
where the elements of each row correspond to the rows of B1|1  that 
appear in the exponential argument. This array is denoted by M (1|1). 

The exponential argument of the term corresponding to i = 3 (   
1|0 

mT 
\ 

1|0 in (26) is exactly the same as the initial condition. In fact, the only 
µ  − µm = 

(B1|0H )(     HT) 
1|0 

· HAν. (23) difference between the initial condition and this term is the coefficient 
G1|1. This is due to the cancellations that occur in general in (26), 
so that one term produced from the convolution will always have the 

This produces the new fundamental direction is HA, scaled by the 
term in parenthesis. For the relationship in (23) to hold, µ  /= µm  
and 
neither µ nor µm can equal zero. In (19c) we also defined an extra 
constant µ3 = 0. This implies that the old fundamental directions 
are retained in the measurement updated cpdf’s CF for terms in the 
exponent of (20) that involve µ3. Therefore, the set of fundamental 
directions for the first measurement update, denoted by B1|1, is given 
by 
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E1 
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B1|1 =  E2   . (24) 
HA 

 

 
 

In (20), we use (23) to express µ2 − µ1  as 

same exponential argument with a different coefficient function. This 
term is referred to as the old term. It will be shown later that the 
old exponential arguments persist across measurement updates, and 
therefore it is useful to order the terms with the old fundamental 
directions  first,  so  that  the  last  term  in  (26)  moves  to  the  top. 
Consequently, M (1|1) is constructed as 


1     2

 
M (1|1) = 1    3 . (27) 

2   3 
 

The other two terms, corresponding to i =  1 and i =  2 in (26), 
are called the intermediate new terms; we say intermediate because 
in all subsequent measurement updates, as  will  be  shown,  they 
will combine with other terms with the same exponential argument, 
and new because they involve the new fundamental directions just 
generated during the measurement update. 

Following  this  new  ordering,  we  define  two  additional  arrays 
P (1|1) and Z(1|1) whose elements correspond to the coefficients 

E2ν E1ν −(E2AET
 of the absolute value functions in the exponents and the coefficients µ2 − µ1 = 

E HT  
− 

E HT  
=  

(E HT)(E HT) th 
2 1 1 2 in the imaginary part, respectively; hence, the i rows of P (1|1) 

= HAν .   (25) and Z(1|1) are related to the ith term in φ̄ . For the measurement 
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are given by 

 

 
 

α1 α2    


 

 

 
    

0 0
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that is indexed by the integer M . It is assumed that P , Z, and M 
inherit their time index from the associated fundamental directions 

     γ  α2 z1 
from B. 
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|E1HT| |E1HT| 
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,    Z(1|1) = 
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E HT 
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|E2HT| 
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
 

|E2HT| 
  1z1 


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V. FIRST  TIME  PROPAGATION 

They have the same dimension as M (1|1), so that an element of 
P (1|1) or Z(1|1) goes with the fundamental direction indexed by 
the corresponding element of M (1|1). 

 
In this section the characteristic function of the cpdf is propagated 

using the dynamics given in (1a). Assume that at an arbitrary time step k the state’s pdf is given by fX 

Finally,  define  a  vector  array  of  integers  L1|1   with  as  many φk|k 
k (x(k)), its CF is given by 

(ν), and that the process noise CF is given as in (3a). The pdf 
elements  as  rows  of  M (1|1).  Each  element  of  L1|1   indicates  the 
number of fundamental directions in that term, i.e., the width of the 
corresponding row of M (1|1). For the first measurement update, L1|1 

is given by 

of x(k + 1) is determined using the linear transformation of the joint 
distribution fXk ,W (xk , wk ). The details of this derivation can be 
found in [12, 13], and the formula for the characteristic function of 

L1|1 = 
f
2    2    2

1
 . (29) the propagated cpdf is given by 

 
T T 

This final array is unnecessary in the first measurement update, but 
will become essential later when different terms involve different 

φk+1|k (ν) = φk|k (Φ ν)φW (Γ ν). (33) 

numbers of fundamental directions. Finally, define the number of 
terms as N1|1. Clearly, N1|1  = 3, the same as the number of rows 
of M (1|1), P (1|1), Z(1|1), and L1|1. 

Using (24) (27) (28) (29) and the definition for N1|1   =  3, the 

Note  that  the  derivation  of  (33)  in  [12, 13]  requires  that  Φ  be 
invertible. 

Applying the time propagation equation (33) to the characteristic 
function of the first measurement update given in (20) yields 

exponential argument for the first measurement update ucpdf’s CF 
given in (20) can be expressed as φ2 1(ν) = φ (ΦT

 ν)φW (ΓTν) 
φ̄    (ΦTν)φ (ΓTν) φ̄    (ν) 
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E1|1(ν) = − Pi  B1|1 ν + j Zi B1|1 ν, 

 =1  =1 

i ∈ {1, . . . , N1|1}.   (30) 
Then, the ucpdf’s characteristic function for the propagated state is 
given by 

 

 
B. Polynomial Coefficient 
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 T E1|1(Φ ν) β Γ  ν  

    
of the same form, and each involves two sign functions, denoted 
s1 and s2, with  the  same  arguments  as  the  absolute  values  in 
the corresponding exponential parts. Functions of this form can be 
reduced to a four parameter polynomial of these sign functions as 
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ai +bis1s2 +jcis1 +jdis2. These relationships are given in Appendix 
A; for k = 1 in particular, Result 3 in Appendix A can be used to 
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obtain the four parameter polynomial by assuming that am  = 1 +j  
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and  bm = cm = dm 
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=  0. The sign functions involve the same 
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fundamental directions as the exponential argument, so denote a final 
array G(1|1) with the same number of rows as M (1|1) and width The changes in φ̄ (ν) from φ̄ 

 
(ν) are a new element in the sum 

four, and let each row contain the parameters for the polynomial, as 
a1 b1 c1 d1
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G(1|1) = a2 b2 c2 d2
 . (31) 

a3 b3 c3 d3 

Note that the same reordering used to form M (1|1) must be used 
here, so that the top row contains the parameters for the old term’s 

of the absolute value terms, and a linear transformation on ν. The 
time propagation step adds no new terms to the sum, hence N2|1  = 
N1|1. Moreover, since the process noise has a zero median, the time 
propagation has no effect on the complex part of the exponential 
argument, so that Z(2|1) = Z(1|1). Finally, there is no effect on the 
parameters of the coefficient functions G, so that G(2|1) = G(1|1). 
The time propagated ucpdf’s characteristic function can be restated 

coefficient. 
Using  the  parameters  in  (31),  along  with  (24)  and  (27),  the 

in the same form as φ̄ , i.e., 
 N2|1 

coefficient function Gi for the first update ucpdf’s CF given in φ̄    (ν) = '\" i G (ν) · eE2|1(ν), (36a) 
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Remark 1: In the notation, for P , Z, and M the subscripts denote 
the row (i.e. which term in the sum) and the superscripts denote the 
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superscript for B denotes the row, i.e., the fundamental direction,  =1  =1 
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Z(2|1) = Z(1|1), Using (36c) we define 
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dσ.   (39) 

L2|1 = L1|1 + 1 = 3 .  =1 

1 3 In order to solve (39), we need to rewrite it in a manner similar to 
(19) using ρ  and µ  substitutions. Begin as in the first measurement 

The process noise introduces a third absolute value term, with a new update by defining constants µ  obtained by expressing 
fundamental direction, into all of the CF’s exponential arguments. 
The next section deals with performing the next measurement update 

M 
T 

B2|1 (ν − H 
  i  T 

B
2|1 

(µ  − σ), (40a) 

to this propagated structure. and thus 

µ  =  
B

 

 
 
M   

2|1 
ν 

 
 
. (40b) 

M   

B
2|1 

H 
 

VI. SECOND  MEASUREMENT  UPDATE 
 
 
 

The  second  measurement  update  process  involves  finding  the 

Next, we rewrite the argument of the exponential of (39) in terms of 
these µ s and σ as 

Li 2|1 
'\"          

T
  

— i 
  

characteristic function of the unnormalized conditional pdf, i.e., φ̄    .  =1 
 B2|1 

H   · |µ   − σ| − γ |−σ| 
2|2 ( 1 2   

The formula used for this second measurement update is the same + j Z1BMi  + Z2BMi     ν 
as the first update, given in (18), and is applied to (36): i  2|1 

1 
i  2|1 

2 

+ j 
(
z(2) − Z1BMi HT − Z2BMi HT   σ 

( 
1 

1 

i  2|1 
2  M 2   

i  2|1 

 
¯ 

2|2 
(ν) =  

1
 

2π 
r  

¯
 
2|1 

(ν − HTσ)φV (−σ)ejσz(2)dσ 
= j Zi B2|1  + Zi B2|1    ν 

Li   +1=4 
2|1 

−∞ 
∞ 

=  
1 

φ̄ 
 

(ν − HTσ)e−γ|σ|ejσz(2)dσ. (37) 

'\" 
− 

 =1 

ρ |µ  − σ| + jθi σ, (41a) 

2π 2|1 

−∞ 
where  the  complex  part  multiplying  ν  does  not  depend  on  σ 
and comes out of the convolution. The parameter definitions are 

 
Since φ̄ 

 
 
is a sum of N 

 
 

2|1 

 
 
= 3 terms, the measurement update 

µ 
2|1 

+1
 
= µ4 = 0, 
 

i 

 
 

1 M 1    
T 

 
 

2 M 2    
T 

process is to solve the convolution integral N2|1  times, once for each 
term. Substituting (36a) into (37), we get 

θ2 = z(2) − Zi B2|1 H — Zi B2|1 H , (41b) 

and the Li 
| + 1 = 3 + 1 = 4 constants called ρ  are given by 

 
P

 
HT

 i 
Mi ∈{1,...,L2|1                               =3}, 

r∞ N2|1 ρ  = i B2|1 i∈{1,...,N2|1 =3} (41c) 
¯ 

2|2 
(ν) =  

1
 

2π 
−∞ 

'\" i G2|1 

i=1 

(ν − HTσ) γ f, = Li    + 1 = 4. 
| 

This is the same procedure used in the first measurement update 
× exp E i (ν − HTσ) − γ |−σ| + jσz(2)

l 
dσ.   (38) except that, due to the new absolute value term in the exponential 

argument introduced in the time propagation step, there are now four 
ρ  constants instead of three. Moreover, there are three fundamental 

Interchanging the integration and  summation operations produces 
N2|1  convolution integrals. As with the first measurement update, 

directions in the exponential argument, instead of just two. 
Let’s turn our attention to the coefficients of the exponents. The 

each convolution will produce an old term as well as new terms, 
called intermediate terms. Since many of these terms have the same 

coefficient functions for the three terms in φ̄ are all of the form 

exponential arguments, they can be combined to reduce the total 
i 

G2|1 (ν) = ai + bi sgn 
(
B 

1 i ν  sgn 
2|1 

Mi ν  + 
2|1 

number of terms in the CF’s sum. 
Therefore, we begin with an arbitrary ith  convolution in (38). jci sgn 

( 
M 1

 

B
2|1 

ν + jdi sgn 
( 

M 2
 

B
2|1 

ν .   (42) 



i i i 

Li 

Mi 

Mi 

2 

Li 

i M 

2  

i i 

2|1 

2|1 

= G 

:= G 

\  

T 

2 
\ 

 

 − 

7 
 

 
Hence the same manipulation used in (40b) to form the µs can be 
used here to get 

ment update from [12, 13] is 

 

G2|1(ν − H 
 
σ) = ai + bi 
sgn 

( 
M 1    

T 

B
2|1 

H 
M 2    

T
  

· B2|1  H 

( 
1 (

 
× 2 sgn (µ1 − σ) + sgn (µ2 − σ)     − 1 

 

 Ii = 
2|1 

+1 
'\" 

 
exp  

Li   +1 


 2|1 '\" i  

+ jci sgn 
(
B 

 
1    

T
  

2|1 
H 

 
sgn (µ1 − σ) 

 
 

m=1 

 

− 
 =1 

 =/  m 

ρ  |µ  − µm| + jθ2µm 

 
+ jdi sgn 

(
B 

2    
T
  2|1 

H sgn (µ2 − σ) ,   (43) 
 

Li   +1 
  

i 
2|1 

    G2|1  +ρ̌m + 
), 
 =1 

ρ̌  sgn (µ − µm) 

 
   /=m   

where the identity sgn (µ1 − σ) sgn (µ2 − σ) = × Li  +1 
1 2  2|1 

2 ( sgn (µ1 − σ) + sgn (µ2 − σ)) — 1 is used. 
   jθi + ρm +  

),  
ρ  sgn (µ − µm) 

In order to use the same integration method as in the first mea- 
surement update, it is necessary for the coefficient of the exponential 
term to be constant within each subdomain of integration (µ , µ +1). 

  =1 
 /=m  
2|1 

+1 
 

 
i  

Since these coefficients are polynomials of sums of sign functions, G2|1 
−ρ̌m + ), 

 =1 

ρ̌   sgn (µ  − µm)   

they are clearly constant in these regions. Now define the following 
constants, 

   /=m  
 

— 
Li .   (47) 

āi = ai, b̄i = bi sgn 
(
B 

 
M 1     

T 
2|1 

H 

 
 

2 
i · B

2|1 

 
HT   , 

jθi − ρm + 2|1 
+1

 ), 
 =1 

 /=m 

ρ  sgn (µ µm)    


  
 

ρ̄1 = ci sgn 
( 

M 1    
T
  

B2|1 H , ρ̄2 = di sgn 
( 

M 2    
T
  

B2|1 H , 
ρ̃1 = 1, ρ̃2 = 1.  

(44)  The convolution produces Li 

 
 

+ 1 = 4 terms, indexed here by m, 
Our integration method also requires that the coefficient involve 

sums over the same sign functions as the exponential argument, which 
2|1 

for each of the i terms in the sum in φ̄ . The first three terms 

has two more absolute value functions than the coefficient has sign 
functions. To do this, introduce two more sign functions into the 
sum in (43) by multiplying them by constants ρ̃3 = ρ̃4 = 0 and 
ρ̄3 = ρ̄4 = 0. Using these, the coefficient in the convolution can be 

are called the intermediate new terms because some of the terms 
from different convolutions have the same exponential arguments and 
can be combined by summing their coefficient functions together, 
as will be shown. The last term produced by the convolution that 
corresponds to m =  4 is the old term because, since µ4   =  0, 

written with sums over the same µ  as in (41a): it has the same exponential argument as the ith term in φ̄ that 
 

i T 1 ( 4
 '\" 

\2 
 was convolved. Simplifications of these terms and their coefficient 

functions are addressed next. 
G2|1(ν − H σ) = āi + ̄bi  

2 

( 
4

 

 =1 

ρ̃ sgn (µ − σ) 

\ 

− 1 

+ j  
'\" 

ρ̄ sgn (µ − σ) 
 =1 

( 
4 4 

\ 
i 
2|1 

'\" 
ρ̃ sgn (µ − σ) , 

'\" 
ρ̄ sgn (µ − σ) 

 =1  
 
 

i 
2|1 

 =1 
( 

4 
\ 

'\" 
ρ̌ sgn (µ − σ) 

 =1 

 
 
.   (45) 

 
 

A. Second Measurement Update - New Intermediate Terms 

 

Since the only difference between the summations in (45) are the 
scalar ρ̃ and ρ̄ constants, we can simplify the notation and use a 
shorthand ρ̌ in (45) to represent all the summations. This notation 
will become more useful in subsequent measurement updates as the 
coefficient polynomials become more complex. 

Using these substitutions, each of the i ∈ {1, . . . , N2|1} convolu- 
tion integrals in (38) can be written as 

 
 

The terms corresponding to m ∈ {1, 2, 3} are called the intermedi- 
ate new terms. These always involve only two fundamental directions: 
one is from B2|1  and the other is the new direction HA as in the first 
measurement update. The formation of the new fundamental direction 
is what recovers the structure involving two fundamental directions, 
as will be shown here. 

 

r∞ 

Ii = 
−∞ 

 
 i 
G2|1 

( 
4 

\ 
'\" 

ρ̌ sgn (µ − σ) 
 =1 

Until the intermediate new terms are combined into the final 
structure for the second measurement update, it is useful to denote the 
exponential argument in terms of both indices i and m. Hence, for the 

× exp 
( 

4 
\ 

− ρ |µ  − σ| + jθi σ  
dσ.    (46) 

intermediate terms, denote the coefficient and exponential arguments 
as Gi,m  and E i,m, respectively. 

2  =1 



2|2 2|2 

 
The solution to the ith convolution integral for the second measure- 

For the ith term, use the definitions in (40b), (41b), and (41c) to 
rewrite the exponential argument of (47) as 



    
M

 m      2|1     m      
 B  ν   

1    =1 
i 2|1   

 

4 5  
 

4 5  
    4 5  

 2 2 2 2 

3 2 2 2 
 

M 

  M 
T 

  
− P    B  

M 
Mi 

M M m 

+ j 
\  

Z 
( 

M H   
 

 
  

 
i       

A 

M      

   

  

    

 

  

| 2|1 

2|1 

i   

    
M 

T 

 
i 

M M   

 

 
T γ α 

  
1       

m 
 

  

 

 
  

 

 1  

8 
 
 

m 
i i,m    B2|1   

ν same fundamental directions, the coefficients for the absolute value 
E2|2   = −γ m   functions are different, as will be shown next. 


Li

 
  B

2|1   
H 

M m 
 Now we construct an array of coefficients for the absolute value 

2|1 
+1 Mi i T functions in the exponents. From (48), a pattern emerges for con-      −B    AB   

 '\"      
Mi      T

  i    2|1 
H     2|1 

  
i 

2|1 
m 
i 

 |HAν| structing these coefficients. They are stored in the array P (2|2) that 
 =1 

 /=m 
  B

2|1 HT · B M 
2|1  

H 
is given by 

    z(2) m + j i ν P (2|2) = 
m 

B
2|1   

H T 
B

2|1 
 P (2|1)  

T 
2 

 
i T   


  γ    α2 |det Φ| + β E1Φ AΓ   

    i  T 
i  B −B

2|1 
AB

2|1  HAν 
  |E1ΦT

  HT| |E1ΦT
 HT|   

2|1 
  m i  T i T 

      T 
   

 =1 B
2|1 

H 
Li  +1 

· B2|1    H 
 γ α1 |det Φ| + β 
 

2 2 

E2Φ  AΓ  
 

−γ 
),

 P   BMi ABMi   T  |HAν|   |E  ΦTHT| 
    

|E  ΦTHT|  
γ det Φ + β

 
T 


 

2| 2|1  γ | | HAΦ AΓ  
   =m   = M m 

  
|HAΦTHT| |HAΦTHT| 

  
.    (51) 

B
2|1   

H 
  

E1ΦT
 AΓ + α 2 E2ΦT

 

 
AΓ 

 
M m 2 ( m 

 
|HΓ| |HΓ| 


 z(2)B i ν − ), Z  Mi Mi  T B B 

HAν 
   

2|1 i 2|1 2|1 

 
γ T α2 T 

   

+ j =1 i T .   (48) 

 
γ    | 1 H

T | E1Φ 
AΓ  + HAΦ 

| 1 H
T | 

AΓ 


 
 

B
2|1   

H 
 |HΓ| |HΓ| 

 This final form for the new intermediate term’s exponential argument 
  

  
E2Φ AΓ

   

involves only two fundamental directions: one that is a row of B2|1 

 
γ   γ 

| 2 H
T | 

T + α1 

| 2 H
T |  HAΦTAΓ   

that corresponds to the M m integers for m ∈ {1, . . . , Li = 3}, and |HΓ| |HΓ| 
i 2|1 

the new vector HA. Moreover, the denominators of both terms are 
equal. Therefore, we define the set of updated fundamental directions 
as B2|2  and construct it by appending HA to the bottom of B2|1  as 

 
E1ΦT    
E2ΦT

 

Next, denote the new array of coefficients for the imaginary part of 
the exponential argument as Z(2|2). Since the time propagation step 
has no effect on the imaginary part of the exponential argument, 
this array always has width two, involving only the original two 
directions, and it has the same number of rows as M (2|2). Based rB2|1

l 
= 

 
T

 
B2|2 =   HA 


HAΦ  

 
. (49)  on the same manipulations used to obtain the elements of P (2|2), 

  ΓT    
HA 

Z(2|2) is given by 
 

 
Z(2|1) 


 

B. Second Measurement Update - Recursive Structure of the Arrays 
Denote an array of integers M (2|2) where the elements of a given 

 z(2) 0    
E1ΦTHT 


   z(2)  0  

row index the rows of B2|2 that appear in the corresponding term. The   E2ΦTHT  
rows of the old terms will be unchanged, and a set of new rows will 

 
z(2) z(1) det Φ 


 

be appended to the bottom, each of width two. Since each convolution 
 

HAΦTHT 
− 

HAΦTHT 


 

produces terms involving one of the old term’s directions, the new 
rows of M (2|2) will contain all possible combinations of rows of 

Z(2|2) = 


   
 

z(2) 0 
HΓ 

 
. (52)   

 
B2|1  with the new row in B2|2  as  z(1) E  ΦTAΓ 


 


1     2     4


 

 
z(2) 

 
E1HT   

· 
 

−  
M (2|1)


 1     3     4 

 HΓ  HΓ  
z(1) T 


   1    5   


2     3     4


  

z(2) 
 

  T   

  
2    5  

      
1    5   

  
E2H · E2Φ AΓ  

    
HΓ 

− 
HΓ M (2|2) = 

 
3    5  

 
= 

  
2    5 

 
. (50)         

  4    5      3    5    The  usefulness  of  L2|2   is  more  apparent  in  this  measurement     
  4    5      4    5    update, since older terms involve more fundamental directions. It is 

formed by simply appending an array of 2s of length six to L2|1  as 
 

 
Each of the three convolutions in the second measurement update 
produced four terms, the old term and three new intermediate ones, 
for a total of nine new  terms.  However,  from  (50)  it  is  clear 
that we only  have six distinct  new terms with  different pairs of 

L2 2 = 
f
LT

 

= 
f
3    3 

2   2
1T

 

2    2    2
1T . (53) 

fundamental directions. This is because three pairs of terms, from 
different convolutions, have the same exponential arguments and can 
be combined into one term by summing their polynomial coefficients. 

C. Second Measurement Update - New Coefficients G 

Consider now the new coefficient functions for the new intermedi- 



These three combined pairs produce the first three new terms, and ate terms produced by the ith term of φ̄ . For m = 1 and m = 2, 
thus they introduce the first three new rows of M (2|2). The last 
three  rows  of  M (2|2)  are  due  to  the  time  propagation  step  and 
involves the ΓT  direction. Although these last three terms have the 

the numerators of (47) are not equal and hence cannot come out of 
the bracket term. They are of a form compatible with Result 3 in 
Appendix A. Denote the coefficient of the mth  intermediate term as 



i,m 

M 
 (

B
 

2 

M M 

k k  1 

i i 

i M 

Mi Mi 

Mi M  
 

Li 
    

Mi 
Mi 

Mi 

Mi 

Mi 

3 

1 

3 

i i 

Mi 
3 

G 

i,m i,m i,m 

i,m i,m 

φ 2|2 2|2 

i 

P    B 

M 

  

2|2 

G in  φ 

2|2 2 2 

( 
i 

( 
i 

2 

( 

Li 

A 

  

i     

  M 

9 

 
G2|1 . Then, the numerators for m = 1 are given by G(1|1), producing the new array G(2|2), which has four columns and 

the same number of rows as M (2|2). Then, the coefficients for the 
i,1 G
2|1 

( 
±ρ̌1 + 

4 
'\" 

\ 
ρ̌  sgn (µ − µ1) new terms (i.e.,those corresponding to i ∈ {4, . . . , 9}) are given by 

 =2 

   ( 
4

 \2 
 

i 
G2|2 (ν) = ai + bi sgn 

(
B 

1 i ν  sgn 
2|2 

Mi ν
  

2|2 

= ā  + ̄b 
1
 

i i  
2 ±ρ̃1 + 

'\" 
ρ̃ sgn (µ − µ1) − 1 + jci sgn 

1 

B2 2 ν + jdi sgn 
2 

B2|2 ν  , (57) 
 =2 

( 
4 

\ 

+ j  ±ρ̄1 + 
'\" 

ρ̄ sgn (µ − µ1) 
 =2 

| 

where ai, bi, ci, and di are the elements of the ith row of G(2|2). 

D. Second Measurement Update - Old Terms 

= āi + ̄bi ( 
1 (

 
\ 

± ρ̃1 + ρ̃2 sgn (µ2 − µ1)    − 1 
For f, = Li 

| − + 1 the constants {ρ̃ , ρ̄ } := ρ̌   = 0, which 
2 

+ j
( 
± ρ̄1 + ρ̄2 sgn (µ2 − µ1) 

 
 

implies that both numerators in the bracket term in (47) are equal 
and hence can be pulled out of the brackets as a common factor. 
Therefore, the measurement updated old term is the same as the 

= ai±bi sgn 
(
B M 1     

T 

2|1 
H 

M 2    
T
  

· B2|1  H sgn (HAν) 
previous old term, except its coefficient is multiplied by the new 
bracket term, G (ν) =    a + b sgn 

(
BMi ν   sgn 

(
BMi ν

 
 

± jci sgn 
(
B M 1     

T
 

2|1 
H + jdi sgn 

2 
i B

2|1 
HT

  
sgn (HAν) . 

(54) 

i 
2|2 

1 

i i 2|2 

+jci sgn 
(
B 

 

 
 
 

1 

2|2 
ν 

2 

2|2 

+ jdi sgn 

 
( 2 

B
2|2 

ν 

 
 l. 

The same manipulations can be done for the numerators for m = 2 by interchanging µ1  and ci  with µ2  and di, respectively. Recalling 
 

1 
 2|2 

=3 ( 
−1 

jθi + γ + '\" 
P  

 B HT    sgn 
(
B i ν

 
 

that ρ̌3 = 0, the new term obtained for m = 3 corresponds to the 
coefficient 

×
2π      2

 
 

i 
 =1 

2|2 2|2  

   
4 2|2 

=3 

−1 
 

i,3  '\"  jθi
 γ +  

'\"
 P  

(
BMi HT    sgn 

(
 Mi ν     

. 
G2|1 0 + 

 
 
 =1 

 
/=3 

ρ̌  sgn (µ − µ3) = −     2 − i 
 =1 

2|2 
B

2|2     


 

 
 
(58) 

ai+bi sgn 
(
B 

1     
T 

2|1 
H 

2    
T
  

· B2|1  H sgn (µ1 − µ3) sgn (µ2 − µ3) 
 

Since the new bracket term in (58) has three sign functions, it cannot 
+ jci sgn 

(
B 1    

T
  

2|1 
H sgn (µ1 − µ3) + be manipulated using the results in Appendix A. 

This implies that terms that have been created in previous measure- 
jdi sgn 

(
B 2    

T
  

2|1 
H sgn (µ2 − µ3) ment updates retain their exponential arguments during the current 

measurement update, and their coefficients are multiplied by new 
= ai+bi sgn 

(
−B 1 

2|1 
AB 

Mi T 

2|1 
sgn ( 

Mi
 

−B
2|1 

Mi T B
2|1 

bracket terms as in (58), with one additional sign function than the 

+ jci sgn 
(
−B 

M 1 

2|1 
AB 

M 3 T 

2|1 

coefficient had in the previous update. The difference between the 
current time step and the time step when the term was originally 

+ jdi sgn 
(
−B 

2 

2|1 
AB 

Mi T 
2|1 sgn (HAν) .   (55) created is called the age of the term, and is given by Lk|k  − 2. 

Although this complicated structure grows, acquiring a new bracket 
Substituting these into the bracket term in (47), and noting that 

the real parts of the denominators are similar to the real part of 
the exponential argument, yields a form that is compatible with the 
numerator forms given in Result 3 to produce coefficient functions 
for the intermediate terms denoted  i,m(ν) and given by 

2|2 

term every measurement update, the structure of each bracket term 
overlaps significantly with the others, and thus can be expressed 
efficiently. 

 
E. Second Measurement Update - The Characteristic Function 

Using (49) (50) (51) (52) (53), and denoting N2|2   = 9 for the 
G2|2 (ν) = ai,m + bi,m sgn 

( 
M 1 

\ 
B

2|2      
ν sgn 

( 
M 2 

\ 
B2|2     ν   + number of terms, the CF of the ucpdf for the second measurement 

update is given by 
jci,m sgn 

( 
M 1 

\ B
2|2      

ν + jd  i,m sgn 
( 

M 2 
\ B

2|2      
ν .   (56) N2|2 

 
It is necessary to use Result 3 because the denominators in  the 
bracket term in (47) form two  sign  functions,  in  the  same  way 
that the new exponential arguments (48) involve only two absolute 

 
 
 

where 

¯ 
2|2 (ν) = 

'\" 
Gi

 
i=1 

 
Li 

2|2 

(ν) · exp 
(
E i 

( 
2

 

(ν)
 

(59a) 
 
\ 

value terms. Therefore, polynomial coefficients for all of the new E2|2(ν) = − '\" 
       

i    2|2 ν + j 

'\" Zi B i ν (59b) 

intermediate terms can be expressed in the simple four-parameter 
 
 =1 

2|2 
=1 

form of (56). Note that the two fundamental directions involved here and the coefficients are given by (57) and (58) for new and old terms, 
are the same as in the argument of the exponential. Hence, combining respectively. Note that the first three terms in φ̄ correspond to the 
two terms with the same exponential arguments involves summing old terms and have the same exponential parts as the three terms 
their polynomial coefficients i,m, which is simply summing the 

2|2 

¯ 
2|1 . The subsequent six terms are new and involve only two 

corresponding parameters. fundamental directions. Although not used here, it will be useful to 
For the second update, three pairs of the nine new intermediate denote the number of new terms in φ̄ as N n 

| = 6. This structure 
terms can be combined, leaving a total of six new terms in addition 
to  the  three  old  terms.  The  set  of  combined  parameters  for  the 

second measurement update are appended to the bottom of G(2|1) = 



repeats itself across subsequent measurement updates, and the next 
section will present the two-state estimator’s recursion for the general 
kth measurement update. 



k|k−1 

k 

i 

k 

k|k−1 

i i i 

i M 

Li 

jθ k−r 

jθ k−r 

i 

M M 

Li 

k|k 

r 
Li 

i 

 
 

 

k k  1 

k 

P i i 

T 

Li 

Li 

( 
i  

r 

2π 

   

Li 
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VII. ESTIMATOR RECURSION FOR THE kth UPDATE AND 

PROPAGATION 

This section presents the two-state Cauchy estimator algorithm 
for a general measurement update k. This algorithm as derived by 

where 
 
 
 
 f, = Li 

 
 
f, = 1, . . . , Li − r 

i 

 
 
 
 

(62b) 

induction based on a study of the first three measurement updates, 
of which two are shown here. It can be verified to be a special case 
of the approach developed in [12, 13]. We first address the update at 
time step k, and then follow with the time propagation step. Finally, 

k|k−1 − r + 1, . . . , Lk|k−1 + 1 

 
Using the shorthand ρ̌  as in the second measurement update (45), 
construct µ , θi , ρ , ρ̄ , and ρ̃  constants as in (40b), (41b), (41c), 

ith 

we show how to determine the minimum variance estimate and its 
error variance. 

and (44), respectively, in order to write the coefficients in the 
integral in (61) as 

 

A. Measurement Update Gk|k−1(ν − H σ) = 

We begin this section assuming we have a time propagated ucpdf’s 
Li

 
k|k− 1 +1 Li 

k| − 1 +1 

CF  φ̄ and are  given  the kth   measurement  z(k). Consider Gi  '\" ρ̃ sgn (µ − σ) , '\" ρ̄ sgn (µ − σ) , 
k|k−1 

the following generalization for the polynomial coefficients Gi 

produced for the old terms in the second measurement update. The 
form in (58) suggests that, in general, the time propagated coefficients 

k|k−1    
 =1 

 
k|k−1 

+1 i 

 
 =1 

will have the form 
'\" 

 
 =1 

(Lk|k−1 
−2)ρ̌ sgn (µ  − σ) , 

Gk|k−1(ν) = ai + bi sgn 
( 

M 1
 Bk|k−1

ν sgn 
( 

M 2
 Bk|k−1

ν k|k−1 
+1 


 

+jci sgn 
(
B 

Li 

M 1 

k|k−1
ν 

 
+ jdi sgn 

 
2 

Bk|k−1
ν 
 l. . . . , 

'\" 
 

 =1 

(1) 
 
 

 

ρ̌ sgn (µ  − σ) 

 
k|k−1 

−3 
n 1 1 k|k−1 

+1 
i  '\"  

× 
r=1 

i k−r + γ + Si (Bk|k− 1ν) := Gk|k−1  
 =1 

ρ̌ sgn (µ  − σ) .   (63) 

where 

— i 

k−r 

1 
— γ + Si (Bk|k− 1ν) 

,   (60a) 

Then, the entire integral can be written compactly as 

Sk−r (Bk|k−1ν) = 
Li 

k−r|k−r 

 
 

∞ 


Li +1 
 

r  k|k−1 '\" P  
(
BMi HT     sgn 

(
BMi ν  , (60b) i  '\" ρ̌ sgn (µ σ) 

 
 =1 

θi 

i k−r|k−r 

1 1 i T 

k|k−1 

2 2 i T 

Ii = 
−∞ 

Gk|k−1    
 

 =1 

   −  

k−r = z(k − r) − Zi Bk−r|k−r H — Zi Bk−r|k−r H , (60c)  
k|k−1 

+1 


 and k − r is the time-step where the term involving Si was × exp − '\" ρ |µ  − σ| + jθi    
k−r 

created. The arrays M ,L,P ,B, and Z  for the general update will 
be constructed later but correspond to those of the first two updates 
already shown. 

 
 =1 

k σ dσ.   (64) 

Using the measurement update formula (18) with the correspond- The solution to this integral, given in [12, 13], is 
ing change of indices, φ̄ is given by 

 
Nk|k−1 

∞ 
φ̄ (ν) = 

'\" 1 G i
 (ν − HTσ)× k|k−1 

+1 '\" 
   

Li +1 


 
k|k−1 '\" k|k 2π k|k−1 Ii = exp  i  

 
 

Li
 

i=1 
−∞ 

 
 

m=1 
 

− 
 =1 

 /=m 

ρ  |µ  − µm| + jθk µm 

k|k−1    exp − 
'\" 

P  BMi (ν − HTσ) − γ |−σ| + jθi σ dσ.  (61)  Lk|k−1 
+1 

 i     k|k−1 
k   i  G +ρ̌m + 

), 
ρ̌  sgn (µ − µm) 

 =1   k|k−1  =1  
   /=m   

It is necessary to divide the domain of integration into regions in 
which the polynomial coefficient is a constant and the exponential 

× 
 jθi + ρm + 

k|k−1 
+1

 
), ρ  sgn (µ  − µm) 

argument  is  continuous.  For  this,  the  summations  that  appear  in 
(60)  must  involve  the  same  fundamental  directions  as  the  expo- 

 k 
 

 
Li

 

 =1 
 /=m 

+1 
 

 
nential argument. Since the top bracket term in (60a) is the four 
parameter polynomial formed when the term was created, we can 

k|k−1 

G i −ρ̌m +  
), 

ρ̌   sgn (µ  − µm)  
k|k−1 

 
define ρ̄   and ρ̄m  constants as in (44), where ρ̄   = ρ̃   = 0 for 

 =1 

 
/=m 

  
,   (65a) 

f, = 3, . . . , Li | − + 1. — 
Li k|k− 1 

+1   
Similarly, the summations in (60b), from the rest of the bracket 

terms in (60a), can be written using constants (r)ρ̌  defined as 
jθi − ρm + 

), 
 =1 

 
/=m 

ρ   sgn (µ − µm)   
 

 
(r)ρ̌ =   

(   
M   

T
  

i Bk−r|k−r H 
0. 

sgn 
( 

M 
T
  

Bk|k−1
H 

 
(62a) 

 
 

where 



Li 

. 

 

 

Li 
 
 

Li 

k  1 k  1 

k  1 k  1 

jθ k−r 

m 
k|k 

P  
( 

M
 

M 

M N N 

H 

k k  1 

     

(rk +1)   k−1|k−1 

k|k 
 

.   

  
γ Prk +Nk k 1 

1 
 

Li 

2 

 

. 
  

 

   

. . 

i 
( 

i 

i 
n 

 M 

  
  
    

 

   

1 
  

. 
n )  | −     

 
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 
k|k−1 

+1 


 
 

M (k|k − 1) 


 
i  '\"   M 1 2k + 1 Gk|k−1 ±ρ̌m + ρ̌  sgn (µ − µm) = (rk +1) 

  
 =1  M 1 

 

(r +2) 2k + 1 
 
 ( 

1 ( 
 
/=m 

k|k−1 
+1 \ 

k  .  
 .      

1 
 

ai + bi ± ρ̃m + 
'\" 

ρ̃ sgn (µ − µm)    − 1 M (k k) = 
MNk k 2k + 1 

1 , (67) 
 | −  

 2  =1  /=m 
|   

2k − 1 2k + 1


 
 

k|k−1 
+1 


 

 
2k 2k + 1


  

2k 2k + 1


 
+j ±ρ̄ + 

'\" 
ρ̄ sgn (µ − µ 

)
  ..

 
.. 

  m m     
 =1 

  
 

k|k−1 
−3 

 /=m 2k 2k + 1 
n n 1 

r
 1 where rk = Nk−1|k−1 −Nk−1|k−1, noting that Nk|k−1 = Nk−1|k−1 n n × 

2π jθi + γ + Si (±(r)ρ̌m, µ  − µm) and Nk|k−1 = Nk−1|k−1. The left column of this new block has three 
p=1 k−r k−r parts. The first N n − |  − elements are the left elements of all the 

  1  
 

 ,   (65b) new rows of the previous measurement update, i.e. the new N n − |  − — i 
k−r 

 
and for r ∈ {1, . . . , Li 

— γ + Si 

 
− 3}, 

(±(r)ρ̌m, µ  − µm) rows of M (k − 1|k − 1). The next element corresponds to the new 
fundamental direction from the previous measurement update, i.e. 
the last row of Bk−1|k−1. The remaining Nk−1|k−1  rows are all the 

 
 
 

i (r) 

k|k−1 same, and involve the new time propagation direction ΓT. 
The growth in the number of terms, which is given as a linear 

Sk−r (± ρ̌m, µ − µm) dynamic system of integers, is based on the pattern for the recursion 
= ±P m 

(
BMi HT   + of M (k|k) given above. The number of terms in the sum in φ̄ , 

i k−r|k−r 

Li 
given by N k|k , is determined from the previous number of terms n k−r|k−r '\"     B 

HT
  

T
  Nk−1|k−1  and the previous number of new terms Nk−1|k−1  by the 

following linear relationship: 
 =1 

i k−r|k−r 
sgn 

Bk|k−1
H sgn (µ  − µm) 

 
/=m =   P m 

( m 
T
  

r
Nk|k 

l 
= 

r
2  1

l r
Nk−1|k−1

l 
+ 

r
1
l 
. (68) 

± i Bk−r|k−r H + 
Li 

n k|k 1    1 k−1|k−1  1 
k−r|k−r m The recursions for the fundamental arrays P (k|k) and Z(k|k) were '\" 

P 
(
BMi 

HT
  ( 

Mi
 Mi  T Mi T

  derived by induction from a study of the first three measurement 
i 

 =1 

 /=m 

k−r|k−r sgn −Bk|k−1
ABk|k−1  

· Bk|k−1
H 

× sgn (HAν) .   (65c) 

 
updates. As in the first two measurement updates, the denominators 
of the elements of the ith row of Z(k|k) are equal. Therefore, it is 
useful to denote the diagonal matrix D(k|k), where 

 

D(k|k) = Diag 
 1

 , . . . , 
1 

, 
   

M 1
 M 1 n 

B. Measurement Update - Recovering the CF Structure  
B rk +1 HT (rk +Nk k  1 

)    
T

 

k|k | − Bk|k 
1 1 1 

l
 

The old terms will be discussed later. For the new terms, i.e., HAΦTHT 
, 

HΓ 
, . . . , 

HΓ .   (69) 
m =  1, . . . , Li | − , the numerators of the measurement updated 
coefficients (65b) can be reduced to a form compatible with Result 
3. The four parameter bracket terms in (65b) can be rewritten as (56) 
from the second measurement update. Manipulate the bracket term 
outside the product in (65b) in the same manner as (54) and (55). 
Then, the entire numerator form (65b) can be collapsed, using Results 
1 and 2, into the form given in (56). Finally, the new four-parameter 
polynomial coefficient involving two fundamental directions (HA and 
a row of Bk|k−1) can be computed as in the second measurement 

Similarly, the denominators of the elements of the ith row of P (k|k) 
are also equal. Denote the diagonal matrix D̄ (k|k), whose elements 
equal the absolute values of the corresponding elements in D(k|k). 

The new terms in P (k|k) and Z(k|k) are formed in the same 
manner as in the first and second measurement update, reducing sums 
of µ −µm terms to constants times HA and reducing the polynomial 
coefficients to the four parameter structure in (23) using the Results 
in Appendix A, producing the new rows for G(k|k). The recursion 
for P (k|k) is 

P (k|k) = 

update using Result 3. Those parameters will be combined with other 
terms with the same exponential arguments, the set of new parameters 

 
 D̄ (k|k)× 
  

 

 
    

M 1
 

P (k|k − 1)  

  
1 

 
   

γ P 2 
 
B     

(rk +1) 
HT  · det Φ

  
+ β 

 
B (rk +1) 

AΓ 
 

will be appended to the bottom of G(k|k − 1) to form a new array   
 k|k 


  

denoted G(k|k). Denote the number of the new terms in φ̄ as 


 
 

M 1 M 1 
 
 

γ P 2
 (rk +2) 

HT det Φ  + β (rk +2) 
 

AΓ
  

N n n  B · B  
  k|k  so that Nk|k = Nk|k−1 + Nk|k .  
 . 

(rk +2) k|k−1 

. k|k 

  

   
Since one of the two fundamental directions for every new term 

will be HA, it is appended to Bk|k−1  to obtain 
 .    
 

2
 

    M
(rk +N  

B
 

. 

. 
n ) k|k−1  

HT 

    
  · det Φ  

M 1 
(rk +N 

   
k k   1 


   

 
| −     

 k−1|k−1 + β B AΓ k|k    
    

γ γ |det Φ| + β  HAΦT AΓ 


     Bk|k = 
 



 

 
 . 

k|k 
Nk−1|k−1    k 

r l 
  

γ P 

 

L 1 
. 
. 

k− 1 

(N ) 
 

  

Bk|k−1    .
 (66

) 


 

HA 

 
Lk|k−1 

−1 
M 

  
 

 
 

 
 1  

Bk 
1 

  
AΓ

   
 
 .  . 

(Nk|k−1 ) 
− 

 =1 .  
   

 M  
  γ P k −1|k−1 

AΓ
  

The array M (k|k) is constructed by appending N n 

M (k|k − 1). The recursion is given by 
new rows to 

 
 B 

 =1 
 
 

  
 

 
 

(70) 



φ i 

 

. . 
\ 

. 

  

M 
− | − 

\ +    .   , B 
z(k) − Z 

k k 

k|k 

i i i 

i M 

Li 

jθ k−r 

k|k 

i P i i 

k−r 

k k 

φ k|k 

 ( 

 

 

 
. ( 

M 1 

 
. 

 | | 
 ( 

T 

. 

( 

φ 
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Similarly, the recursion for Z(k|k) is 

Z(k|k) = 

 
¯ 
k+1|k 

 

 
(ν) = 

Nk+1|k 
'\" 

 
i=1 

Gk+1|k (ν) 

 
Z(k|k − 1)   

Li
 
k+1|k M   

 
2 

        
\ M    D(k|k)×  × exp  '\" 

Pi  
  i ν + j 

'\" 
Zi B  i ν ,   (76) 

z(k) 0 
 

 −  
 

 
 =1 

 Bk+1|k  
 =1 

k+1|k  
z(k) 0   
z(k) −Z2

 
( 

M 1
 (rk +3) B 

\  
HT · det Φ 


 

where  
β

 
 (rk +3) k−1|k−1 

 
P (k + 1 k) = 


P (k k) β 

,   Z(k + 1 k) = Z(k k),         
  

|  | .  | | 
 .  

β 
(rk +N n   ) 

 .   (71) 
 

2(k + 1)


 
z(k)   −Z2 

n B k−1  HT · det Φ  
(rk +N    

k−1 
) k−1|k−1 

  
M (k + 1 k) = 


M (k k)  

2(k + 1) 
.. 

 , 
z(k) −z(k − 1) · det Φ   .  

2  ),    
1  2(k + 1) 

z(k) −   
 
 =1 

Z(Nk  1 k  1 ) Bk|k AΓ    
1
 1 

r
Bk|k · Φ 

l
 

  ..   
 2 

...
 
( 

 
 
 
M   (Nk 

   
1 k  1 ) 


 

Lk+1|k = Lk|k 

    
 .  
1 

k+1|k = ΓT , 

),      

 =1   
(Nk−1|k−1 ) 

Bk|k − | −   AΓ  (77) n n 

Since all the new rows in M (k|k) have width two, Lk|k  is measure- 
and both Nk+1|k  = Nk|k  and Nk+1|k  = Nk|k  because no new terms 
are created during the time propagation. 

ment updated by appending N n 
| elements of the integer 2 to Lk|k−1 

as LT T T D. Evaluating the Conditional Mean and Estimation Error Variance 
k|k = 

f
Lk|k−1 ,   2,   . . . ,   2

1
 . (72) 

It is shown in [12, 13] that φ̄ 
 
(ν) is twice continuously differen- 

This produces all of the parameters necessary to express the ucpdf’s 
CF for the kth measurement update as 

Nk|k 

tiable. The mean can be found from the unnormalized characteristic 
function [1] by taking its partial derivative and then taking the limit 
as ν goes to the origin. 

φ̄ (ν) = 
'\" 

G i
 

(ν)   (    ¯  \T
  

k|k i=1 k|k x̂(k) = E [x(k)|Zk ] = jf 1 (Z ) 
∂φk|k (ν) ∂ν , (78a) 

  
Li 

k|k 

 
( 

2 
\ 

Zk k 
   
ν→0 

× exp − 
'\" 

P  BMi ν + j 
'\" 

Z BMi ν ,   (73) where 
 

 =1 

i    k|k  
 

 =1 

i  k|k k (Z ) = φ̄ 
(ν)

 
 . (78b) 

 
fZ k 

k|k 

 
ν→0 

where coefficients are given by The second moment can be found by taking the same limit of the 
second partial derivative of the characteristic function, as 

Gk|k (ν) = ai + bi sgn ( M 1
 Bk|k ν sgn ( M 2

 Bk|k ν E x(k)x(k)T 
l
      −1   ∂ 2φ̄ (ν)   

jci sgn 
(
B 

 
 
M 1 

k|k ν 

 
 

+ jdi sgn 

 

 
 

2 
i Bk|k ν 

l. |Zk = · 
fZk (Zk ) 

Xk |Zk 

∂ννT 

  
   
ν→0 

, (78c) 

k|k −2 
and the error variance is given by   l n 1 

r
 1 Ξ(k) = E x(k)x(k)T

 x̂(k)x̂(k)T. (78d) × 
2π 

r=1 
i k−r + γ + Si (Bk|k ν) 

|Zk    − 

1 The limits above must be taken along valid directions, due to the — 
jθi — γ + Si (Bk k ν) ,   (74a) structure of φ̄ (ν) in (76). Since this structure is a special case of 

where 
Li 

k−r|k−r 

k−r k−r | the structure in [12, 13], the details of these operations can be found 
there. 

Sk−r (Bk|k ν) = 
'\" 

 =1 

  
(   

M   
T
  

i Bk−r|k−r H 

 
1 

sgn 
 
 
2 

( 
M  

 

Bk|k ν , 
 
(74b) 

 
VIII. FINITE  HORIZON  APPROXIMATION 

In order to arrest the growth in computational complexity, we 
θi 1   Mi T 2  Mi T approximate the full information CF with one using a fixed slid- 

k−r = z(k − r) − Zi Bk−r|k−r H — Zi Bk−r|k−r H , (74c) 
ing  window  of  the  most  recent  measurements,  where  number  of 

and k−r is the time-step where the term involving S i was created. measurements in this horizon is denoted NZ . Hence, the first NZ 
Hence, the age of the ith term after the kth update is Li 

| 
new terms have age zero. 

 
C. Time Propagation 

— 2, and measurement updates in the estimation are performed normally. Then, 
for every measurement update k > NZ , we initialize a new finite 
horizon (FH) estimator and perform NZ  measurement updates over 
the  fixed  window  {z(k − NZ  + 1), . . . , z(k)}.  This  new  initial 

The general time propagation uses the same formula as in the first 
time propagation, 

condition for the FH estimator is of the form 
k W 1 W  2 

    
β ΓTν

 
 W 1|0(ν) = exp −α1     BW 1|0ν  − α2     BW 1|0ν

 
 

W W 
l 

¯ 
k+1|k (ν) = φ̄ (ΦTν) · e

−
 

   
. (75) 
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jx̄2  

ν2   , 
The characteristic function  of the ucpdf  for the once  propagated 
conditional density can be written as 

BW 1|0 = — sin ϕ    cos ϕ , (79) 



of  φ W 1 1 

CF φ 

k|k 

k|k 

N 

e(
Ξ

1,
2)

  
  e

(Ξ
2,

2)
   

 e
(Ξ

1,
1)

  
   

e(
x 2

) 
e(

x 1
) 

2 

13 
 

 
where BW 1|0 is a rotation matrix. Denote the windowed first mea- 
surement update mean and variance by x̂W (1) and ΞW (1). The 

10−6 

k k −9 exact             val ues             of             αW       ,             αW       ,             x̄               ,             x̄               ,             and             ϕ           are             det er mi ned,             given             the 10 
1 2 1 2 −6 

meas urement                 z( k           −        NZ                     +           1),                 by                 equati ng                 the                 fir st                 two                 moment s  10 
¯ 
k−NZ +1|k−NZ +1 

and of the updated FH first update φk . 
| 10−9 

This process involves solving five nonlinear equations with the five 
unknowns stated above, which is carried out using standard numerical 
tools. It is necessary to make use of the decomposition in (5a) in order 
to apply the proposed algorithm to the initial condition in (79). 

This local first measurement updated CF, then, has the same mean 
and variance as the original CF we are approximating. The remaining 
NZ − 1 measurement updates are performed over the measurements 
in the window, ultimately producing the NZ -measurement updated 

10−4 

10−6 

 

10−4 

10−6 

10−4 

10−6 

9 10 11 12 13 14 
¯k 

W NZ |NZ . This CF is taken as the approximation of φ̄ , i.e., Time Step 

φ̄k 
k k . Hence, for k − NZ + 1 ≤ NZ  the FH initial 

W NZ |NZ   ≈ φ̄ | 
condition in (79) approximates φ̄ 

, which is conditioned on the 
Fig. 1: Comparison of two finite horizon estimators (dashed is 8, solid 
is 10) to the full information estimator’s means and error variances. 

entire measurement history. Then, for k − NZ + 1 > NZ , the FH 
initial condition approximates the mean and variance of φ̄k−NZ +1 , 

W NZ |NZ 

produced by a previous iteration of this process. 
Numerical comparisons have shown that the local initial condition 

found in this way performs well in reproducing the full information 
mean and variance. Moreover, simulations have shown that  the 
finite horizon mean and variances agree very closely with the full 
information case even with horizon lengths as small as 8, as shown 

 
B. Cauchy-Gaussian Comparison 

In our examples we compare the performance of our Cauchy 
estimator to the Kalman filter. To do this, we need to be able to 
choose Gaussian parameters for the Kalman filter that approximate 
the Cauchy parameters. To construct a normal or Gaussian pdf that 
best fits a given Cauchy pdf, the following optimization problem is 
solved 

in the next section. σ∗ = arg min r
∞   f C (x) − f N (x)

l
 dx, (80) 

X X 
σ 

−∞ 
IX. NUMERICAL  EXAMPLES where the Cauchy pdf is f C (x) =  δ/π

 , δ > 0 and the normal pdf 
 
 

We present a set of four examples demonstrating the performance is given by fX (x) = e 

X 
−x2 /(2σ2 ) 

√   
2πσ 

x2 +δ2 

, σ > 0. Solving (80) analytically 

of our proposed two-state estimator. The main challenge in imple- 
menting this estimator is the growth, with each measurement, of the 
number of terms needed to express the cpdf’s CF. The proposed two- 
state estimator is more efficient and produces far fewer terms than 
the general-state estimator presented in [12, 13]. The improvement in 
performance is quantified in the table below, comparing the number 
of terms in the sum for a two-state implementation of [12, 13] to the 
number produced by the proposed algorithm, given by (68). 

 
Measurement Update k 8 10 12 

Nk|k  of Previous [12, 13] 75036 1389207 25719609 
Nk|k of Proposed 3193 21891 150049 
Percent Retained 4.3% 1.6% 0.58% 

However, the proposed estimator algorithm still suffers from the same 
fundamental issue of growing complexity. This motivated the use of a 
fixed window of the most recent measurements discussed in Section 
VIII, the performance of which is discussed next. 

 

 
 

A. Finite Horizon Accuracy 

Figure 1 shows, on a logarithmic scale, differences between the 
elements of the estimated state and error variance between the 
finite-horizon and full-information estimators, normalized to the full- 
information values; denote this normalized difference of a given 
element as e(·). The system parameters used are β = 0.5, γ = 0.1, 
α1    =  α2    =  0.8,  eig(Φ)  =  0.8 ± 0.55j,  H  =  [1     1],  and 
Γ = [0.5   1]T. We compare the performance of horizon lengths 
of NZ = 8 (dashed lines) and NZ = 10 (solid lines). The subscripts 
indicate which element of the state estimate vector and error variance 
matrix are being compared. These results show that this finite horizon 
approximation is very accurate, with errors approximately between 
0.01% and 0.0001% for our example and these two horizon lengths. 

leads to a complex nonlinear equation relating σ∗ to δ. Solving the 
latter numerically yields σ∗ = k0δ,    k0  ≈ 1.38980. 

 
C. Simulations 

The simulations in Figs 2, 3, and 4 all use the same dynamics, 
where the eigenvalues of the transition matrix are eig(Φ) = 0.8 ± 
0.55j, H = [1  1], and Γ = [0.5  1]T. The initial condition has a 
zero median and α1 = α2 = 0.8. All simulations use a measurement 
horizon length of NZ = 10. In Fig. 2, γ = 0.5 and β = 0.1 so that 
the measurement noise dominates the process noise; in Fig. 3 the 
parameters are interchanged so that the process noise dominates the 
measurement noise. Gaussian parameters used for the LEG and for 
Gaussian noises are closest, in the L2 sense, to their corresponding 
Cauchy distributions. For clarity of presentation in the figures, the 
first update occurs at k = 0 instead of k = 1. 

Figures 2 and 3 compare the Cauchy and Kalman filters’ responses 
to Cauchy distributed noises, and Fig. 4 compares their response 
to Gaussian distributed noises. Figures 2b and 3b show the same 
data as Figs. 2a and 3a when zoomed in around zero to demonstrate 
more clearly how the controllers respond when noise impulses are 
encountered. 

When facing Cauchy distributed noises the proposed estimator 
outperforms the Kalman filter, especially when γ > β as in Fig. 
2. In this case, the Kalman filter’s estimation error is almost always 
larger than that of the Cauchy estimator. Moreover, the impulsive 
noise values cause the conditional variance computed by the Kalman 
filter to be orders of magnitude smaller than the exact conditional 
variance computed by the Cauchy estimator. 

In Fig. 3, where β > γ, both the Cauchy estimator’s and the 
Kalman filter’s estimation errors appear to have similar performance. 
However, the exact values of the conditional error variance computed 
by the Cauchy estimator are quite different from the error variance 
computed by the Kalman filter. In contrast to Fig. 2, in the case 
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where β > γ the Kalman filter’s estimation error decays faster due 
to the larger Kalman filter gain, since the process noise parameter 

and 
ā = −2γ  ρ2  + D2

 − γ  − θ2   , b̄ = −4γρmD, 
dominates the measurement noise. This faster decay leads to the c̄ = 4θγρm, d̄  = 4θγD, 
similar performance exhibited by both estimators. 

During  periods  in  the  simulation  without  large  impulses,  the ē =  ρ2   + D2 − γ 
2  2 

− + 4 (ρmD)2
 

2 2 

 
(82c) 

Cauchy and Kalman filters have similar performance, as shown in ¯ +4 (ρmθ) + 4 (θD)  , 
Figs. 2b and 3b. This suggests that in a non-impulsive noise setting, f = 4 (ρmD) · ρ2 2

 − γ2
 
 + 8θ2ρmD, 

the two estimators would have similar performance. In a Gaussian 
noise setting, shown in Fig. 4, the Cauchy filter performs very well. It 
approximates the variance of the optimal Kalman filter and tracks its 
mean very closely. This demonstrates the robustness of the Cauchy 

∆ = π · ē2 − f̄ 2   . 
Result 3: The term given by 
  am + bm · sgn (HAν) + jcm + jdm · sgn (HAν) 

i i i i ( M m 
estimator in a Gaussian noise environment.   jθ + ρm − γ · sgn Bk|k  ν + D · sgn (HAν) 

 
X. CONCLUSIONS 

 am  bm      sgn (HAν) jcm  + jdm      sgn (HAν)  − 
 

An efficient two-state Cauchy estimation algorithm able to operate 
jθ − ρm − γ · sgn 

(
B 

m 

k|k  ν + D · sgn (HAν)   

over an indefinite number of measurement updates is derived and 
presented. Although the estimator here is a special case of the general = am + bm · sgn 

 m B i ν 
 

sgn (HAν) 

Cauchy estimation framework in [12, 13], the structures presented in 
o o k|k 

m 
( 

M m 

k|k  ν 
+ jdm

 · sgn (HAν)   (83a) 

this work take advantage of relationships currently understood only 
for the two-state system, allowing the development of an efficient 
recursive estimation structure. A method for using a finite window of 
measurement is proposed, and example simulations are presented to 

+ jco  · sgn  B i o 

where the i subscript denotes the input term and the o subscript 
denotes the output term, 

demonstrate the performance and robustness of the Cauchy estimator 
over a large number of measurement updates. 
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(b) Zoomed view. 

Fig. 2: Cauchy and Kalman estimators for γ > β; thick lines are the 
estimate errors, and thin lines are the standard deviations. 
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(a) Gaussian noises, β = 0.1 and γ = 0.5. 
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(b) Zoomed view. 

Fig. 3: Cauchy and Kalman estimators for β > γ; thick lines are the 
estimate errors, and thin lines are the standard deviations. 
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(b) Gaussian noises, β = 0.5 and γ = 0.1. 

Fig. 4: Cauchy and Kalman estimators against Gaussian noises; thick 
lines are the estimate errors, and thin lines are the standard deviations. 
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A stochastic control scheme is developed for scalar, discrete-time, and linear-dynamic systems driven 
by Cauchy distributed process and measurement noises. When addressing the optimal control problem 
for such systems, the standard quadratic cost criteria cannot be used. In this study we introduce a new 
objective function that is functionally similar to the Cauchy probability density function. The performance 
index, defined as the expectation of this objective function with respect to the Cauchy densities, exists. 
The dynamic programming solution to the fixed and finite horizon optimal control problem that uses 
this performance index appears to be intractable. Therefore, a moving horizon optimal model predictive 
control problem is implemented, for which the conditional expected value of the objective function and 
its gradients can be computed in closed form and without assumptions such as certainty equivalence. 
Numerical results are shown for this m-step model predictive optimal controller and compared to a 
similar, Linear-Exponential-Gaussian model predictive controller. An essential difference between the 
Cauchy and Gaussian controllers when applied to a system with Cauchy noises is that, while the Gaussian 
controller is linear and reacts strongly to all noise pulses, the Cauchy controller can differentiate between 
measurement and process noise pulses by ignoring the former while responding to the latter. This 
property of the Cauchy controller occurs when an impulsive measurement noise is more likely than an 
impulsive process noise. The Cauchy and Gaussian controllers react similarly when applied to a system 
with Gaussian noises, demonstrating the robustness of the proposed control scheme. 
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1. Introduction 
 

Modern stochastic optimal control algorithms, such as the 
Linear-Quadratic-Gaussian (LQG) and Linear-Exponential-Gaus- 
sian (LEG) algorithms, assume that the ∧system is driven by addi- 
tive Gaussian process and measurement noises (Speyer & Chung, 
2008, Chapters 9 and 10). Since the Gaussian probability density 
functio∧n (pdf) is a light-tailed pdf, which essentially rules out the 
possibility of large deviations, these algorithms are unable to han- 
dle measurement outliers that produce large filter residuals due to 
impulsive changes in the measurements. For example, the govern- 
ing types of noises that occur in radar and sonar applications are 
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atmospheric and underwater acoustic noises. Noises of this type 12 

exhibit very impulsive behaviors that are not captured by a Gaus- 13 

sian distribution (Kuruoglu, Fitzgerald, & Rayner, 1998). Dynamic 14 

impulsive noises can be used in modeling unknown adversarial 15 

motion, as well as for modeling air turbulence, which was shown to 16 

be better represented by non-Gaussian, heavy-tailed distributions 17 

(Reeves, 1969). The literature on how to handle outliers is dom- 18 

inated by heuristic methods that assume a Gaussian distribution 19 

for the underlying stochastic processes. Moreover, these methods 20 

typically work for a posteriori analysis of static problems, which 21 

is inadequate for control (Fernholz, Morgenthaler, & Tukey, 2004; 22 

Hampel, Ronchetti, Rousseeuw, & Stahel, 1968; Holland & Welsch, 23 

1977; Pirinen, 2008). 24 

In this paper, the proposed controller is based on a discrete 25 

time linear dynamic system with Cauchy distributed process and 26 

measurement noises and initial condition. The Cauchy probabil- 27 

ity distribution function (pdf) is in the class of probability distri- 28 

butions called symmetric alpha-stable (Sα-S) distributions, whose 29 

members are described using their characteristic functions (see 30 

Samorodnitsky & Taqqu, 1994 for a comprehensive treatment of 31 

Sα-S densities). Within this class: the Gaussian pdf corresponds to 32 

α = 2; α = 1 leads to the Cauchy pdf; all pdf’s with α < 2 have    Q3  33 

∧ 
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1 an infinite variance;2 and the Cauchy pdf lacks a defined mean or 
2 first moment. However, for Cauchy uncertainties the conditional 
3 mean of the state and its conditional variance given a measure- 
4 ment history do exist (Idan & Speyer, 2008, 2010). An important 
5 aspect as well is that the conditional error variance is a function of 
6 the measurement history (Idan & Speyer, 2008, 2010), quite unlike 
7 the Gaussian case where the conditional error variance is a priori 
8 known. 
9 One of the fundamental lessons learned from the results pre- 

10 sented in this paper is that the handling of measurement outliers 
11 directly involves the stochastic controller. A stochastic control law 
12 has to be consistent with the underlying structure of the condi- 
13 tional pdf of the state variable and with the assumptions used in 
14 its construction. Under the Gaussian assumption, only the state es- 
15 timate depends on the measurement while the error variance of 
16 the estimate does not. Since optimal controllers based on Gaus- 
17 sian noises (e.g. LQG and LEG controllers) are linear in the mea- 
18 surements, they do not differentiate between outliers and normal 
19 measurements and respond to both of them in the same manner. 
20 Since  stochastic  optimal  control  algorithms  are  developed 
21 based on the minimization or maximization of an expectation of an 
22 objective function, an appropriate computable objective function 
23 has to be determined for systems with Cauchy noises. The objective 
24 functions  normally  used  in  the  LQG  and  the  positive  LEG  (by 
25 which we mean that the quadratic argument of the exponential 
26 is positive) control settings are not suitable here because those 
27 expectations are either undefined or infinite for Cauchy pdf’s.3 

28 Hence, a different objective function has to be chosen for thi∧s case. 
29 We chose an objective function that is a product of functions that 
30 resemble scaled Cauchy pdf’s in structure and depend on the state 
31 or control variable. For C∧auchy uncertainty, the expectation of this 
32 objective function is finite and its conditional expectation given the 
33 measurement history can be expressed as a closed form function 
34 of the measurements and controls. A similar performance index 
35 formulation was made for the LEG problem, where the objective 
36 function was constructed as a product of exponential functions 
37 of the state and the control (Jacobson, 1973) resembling Gaussian 
38 pdf’s in form. 
39 

∧  Based on the proposed objective function, a dynamic program- 

The scalar state problem addressed in this work provides in- 57 

sight into the problem of handling outliers, which is resolved by the 58 

Cauchy stochastic controller explicitly, and not in the filter alone, as 59 

has been traditionally done for Gaussian noises. There is no equiv- 60 

alent construction of such a Cauchy controller in the non-Gaussian 61 

stochastic control literature, including in the stochastic model pre- 62 

dictive control (MPC) setting. In stochastic MPC, the objective is 63 

to minimize a quadratic objective function subject to probabilis- 64 

tic inequality constraints. In Jun and Bitmead (2005) the assump- 65 

tion of a linear system with additive Gaussian noise is essential in 66 

transforming the stochastic optimal control problem into a deter- 67 

ministic one.5 In Cannon, Cheng, and Rakovic (2012) the Gaussian 68 

assumption is removed by assuming that all stochastic uncer- 69 

tainties have bounded support. Our motivation is to determine a 70 

stochastic controller based on Cauchy pdf’s with infinite support, 71 

which produces a deterministic analyti∧c performance index in the 72 

control and measurement history. 73 

The Cauchy controller gives insight into robustness by intro- 74 

ducing heavy tailed distributions into the design. Moreover, a con- 75 

troller design process is advocated for handling outliers based on 76 

whether the measurement noise dominates the process noise. If 77 

measurement noise dominates, the measurement outliers do not 78 

have to be known, since the controller responds little to them. 79 

The paper is organized as follows. The optimal control prob- 80 

lem is formulated in Section 2. A new objective function is intro- 81 

duced in Section 3 having the functional form of the Cauchy pdf. 82 

The performance index to be optimized is the conditional expecta- 83 

tion of the objective function. A dynamic programming recursion 84 

rule is derived in Section 4. Since the solution to the dynamic pro- 85 

gramming problem appears intractable, the Cauchy m-step model 86 

predictive optimal controller is formulated and developed in Sec- 87 

tion 5. The conditional expected value of the objective function is 88 

determined in closed form. However, due to its complexity, the 89 

maximization of the conditional performance index with respect to 90 

the projected control sequence is determined numerically, as de- 91 

tailed at the end of Section 5. Numerical examples are presented 92 

in Section 6. First, a one-step process with a single measurement is 93 

first explored to gain insight into the structure and behavior of the 94 

Cauchy controller in the presence of impulsive heavy-tailed noises 95 

40 ming recursion rule is developed to construct the optimal con- 
41 trol function. However, the application of this recursion rule to 
42 the finite fixed horizon optimal control problem for systems with 
43 Cauchy distributed noises appears to be intractable. Therefore, we 
44 instead develop an m-step model predictive optimal controller 
45 (Morari & Zafiriou, 1989), i.e., open-loop-optimal feedback con- 
46 troller,4 for such systems. Some initial results on scalar Cauchy 
47 model predictive control, the Cauchy controller, were presented 
48 in Idan, Emadzadeh, and Speyer (2010) and Speyer, Idan, and 
49 Fernández (2010). The current work presents a more complete 
50 scalar Cauchy m-step optimal model predictive solution. Although 
51 formulating an m-step optimal predictive controller produces a 
52 suboptimal solution, the performance index is evaluated by de- 
53 termining the conditional expected value of the objective function 
54 given the measurement history exactly in closed form. This Cauchy 
55 controller is expressed as a nonlinear function of the measurement 
56 history. 

discussed in Section 6.1. Then, multi-step examples are given in 96 
∧Section 6.2 comparing the performance of the Cauchy and Gaussian 97 

m-step model predictive optimal controllers under both Cauchy 98 

and Gaussian noises. Finally, concluding remarks are presented in 99 

Section 7. 100 

2. Problem statement 101 

Consider the linear, discrete-time, scalar stochastic system 102 

xk  = Φxk−1 + uk−1 + wk−1 , zk  = Hxk + vk , (1) 103 

where xk is the state, uk is the control signal, zk is the measurement, 104 

and k is the time index. The signals wk and vk are independent 105 

process and measurement noise sequences, respectively, that are 106 

assumed to be independent of each other and Cauchy distributed 107 

with pdf’s 108 

∧ 

2 The in-phase component of radar clutter time series agrees extremely well with 

β/π 
fwk (wk ) = 

w2 
, fvk (vk ) = γ /π 

v2 + γ 2 
. (2) 109 

a Sα-S pdf with α = 1.7 (Tsakalides & Nikias, 1998). ∧ 110 
3 In this paper, we will compare our Cauchy controller to the negative LEG 

controller. 
4 Open-loop-optimal feedback was introduced in the stochastic control context 

by Dreyfus in Dreyfus (1965) 

∧ 
 

5 Moreover, the solution in Jun and Bitmead (2005) is exact only for the scalar 
case. 
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1 These pdf’s have a median of zero and scale parameters β > 0 and 
2 γ > 0, respectively. The initial state is assumed to be also Cauchy 

function, discussed later, as 56 

n−1 3 distributed ψ 


Xn
 n−1 

 

α/π 
ℓ+1 , Uℓ   

 
= 

i=ℓ 
Mx (xi+1 )Mu (ui ) 57 

4 fx0 (x0 ) = 
(x

 0 − x̄ 0 )2 
(3) 

+ α2 
n−1 

 
 

= 
2 
i+1 

2 2 
2 

 
i ·    2 2 

 
(6) 58 

5 with a median at x̄ 0 and scale parameters α > 0. i=ℓ xi+1 + ηi+1 ui   + ζi 

6 Define the measurement history as 

7 Zk  := {z0 , . . . , zk }, (4) 

with ℓ < n. The state and control histories used in the objective 59 

function are defined as 60 

8 and assume that uk  ∈ Fk , where Fk is the class of functions adapted 
n 

ℓ := { xℓ, . . . , xn }, (7a) 61 

9 to the σ -algebra σk   generated by Zk . The notion of adaptation 
10 is that the random variable, here the control, is measurable with 
11 respect to events in σk . 
12 In this work we consider a regulation problem, where the state 
13 is to be driven to zero while penalizing the control effort. This prob- 
14 lem will be cast as an optimal control problem, the performance 

U n  := {uℓ, . . . , un }. (7b) 62 

Since the performance index is composed of the expected value of 63 

bell-shaped curves in (6), we maximize to obtain regulation of the 64 

state with penalties on the control. The performance index, which 65 

is the expectation of the objective function in (6), is given by 66 

15 index of which will be introduced next. ∗ 
ℓ,n 

= max E 


ψ 


Xn
 

n−1 
ℓ 

, U n−1  
, (8) 67 

16 3.  Performance index for a Cauchy controller 
 

17 In posing an optimal control problem for the model in (1), 
18 commonly  used  objective  functions  like  the  quadratic  or  the 
19 exponential of a quadratic cannot be used because the expectations 
20 required to evaluate those objective functions are infinite when 
21 the system noise inputs have heavy-tailed Cauchy pdf’s. Therefore, 
22 one has to introduce a new, computable objective ∧function. In this 
23 work we suggest an objective function that resembles in its form 
24 the Cauchy pdf, and which also allows an analytical derivation 
25 of the controller. This general objective function is reminiscent 
26 to the choice of the objective function for the LEG (Speyer & 
27 Chung, 2008, Chapter 10), which was constructed as a product 
28 of functions resembling the Gaussian pdf. The original motivation 
29 for the LEG objective function (Jacobson, 1973) was to consider 
30 these exponential functions as membership functions in fuzzy set 
31 theory, where the objective function was constructed as a product 

where element uk in U n−1 , the control sequence, is uk  ∈ Fk . The 68 

expectation is taken over all the underlying random variables, i. e., 69 

all the measurement and process noises, and the initial conditions. 70 

4. Dynamic programming approach 71 

To solve the problem in (8), we first consider the dynamic 72 

programming approach with the hope of constructing an analytic 73 

form of the controller. It requires the derivation of the general 74 

optimal return function and the backwards recursion rule, which 75 

are  derived  next.  This  derivation  shows  the  complexity  of 76 

evaluating the backwards recursion rule for Cauchy noise patterns 77 

and motivates the derivation of an alternative model-predictive- 78 

type controller. 79 

In this derivation, we consider a given fixed horizon problem 80 

by setting ℓ and n of (8) to be ℓ = 0 and n = N . Expanding the 81 

expectation on the right-hand side of (8) results in 82 

0,N    = max E 


ψ 


X1 , U0 


 83 

32 of   these   Gaussian-shaped   membership   functions.   Similarly,   a J ∗ 
33 objective function constructed from products of Cauchy-shaped N −1 

0 

N N −1 

34 membership functions is proposed here for systems with Cauchy max E 


E 
 
ψ 


XN , U N −1  

Z  
84

 

35 noises. This similarity allows us to compare the optimal controllers 
36 for linear systems with analogous performance index and different 

N −1 
0 

       
1 0 

         
     N 

N N −1      
37 types of noise. 
38 Consequently, the membership functions that penalize the state 

= max E 
N −1 
0 

E   · · · E E   ψ X1 , U0  ZN   
 ZN −1 · · · Z0 85 

39 and control are chosen as rational functions resembling Cauchy 
 

                N 

40 pdf’s and are expressed as 
∧ 

= E    max E 
u0 ∈F0 

· · · max E   E   ψ 
uN −1 ∈FN −1 

X1 , 86 

2 

41 Mx (xk ) = k
 

x 
2 , Mu (uk ) = 

2 
k (5) 2 2 

N −1  
0 | ZN 


 | ZN −1 


 

 
· · · | Z0 87 

k  + ηk uk  + ζk 
 ∞ 

   ∞ 
   ∞ 

42 where ηk  and ζk  are design parameters which affect the shape of 
43 these functions. Note that as ηk  → ∞ or ζk  → ∞, the penalties 

= max 
−∞   u0 ∈F0 

· · · 
−∞ 

max 
uN −1 ∈FN −1 

E 


ψ 


XN , 88 

−∞ 
44 on the state or the control are removed. In addition, smaller 
45 values of ηk   and ζk   induce heavier weighings on the respective 
46 variables. These particular functions are chosen because they make 
47 the expectation with respect to the conditional pdf generated 
48 by Cauchy noise of the resulting performance index analytic in 

U N −1  
| ZN

  
f
 

N     N −1 

 
( zN 

 

 
| ZN −1 

 
) dzN 89 

49 the control and measurement history as will be shown in the 
50 sequel. 

· · · fz1 |σ0 ( z1 | Z0 ) dz1 fz0 (z0 )dz0 , (9) 90 

51 Ideally, for regulation, we would like to solve an infinite horizon where element uk  in U n−1 is uk  ∈ Fk , and fz    σ (zk |Zk 1 ) is the 91 
0 k | k−1 − 

52 regulation problem. This is often done by solving a fixed horizon 
53 problem from k  = 0 to N , e.g., using the dynamic programming 
54 approach, and then letting N  go to infinity. However, we define a 
55 more general objective function that will serve both the dynamic 

programming  formulation  and  the  model  predictive  objective 

probability density function conditioned on the σk−1 generated by 92 

the measurement histories up to k − 1. The Fundamental Lemma 93 

(Speyer & Chung, 2008, Chapter 9) was used to interchange the 94 

maximization and expectation operations in the third equality 95 

of (9). 96 
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1 To apply dynamic programming to the problem in (9), we need 
2 to recast the performance index as a recursion rule for an optimal 
3 return function. To get this recursion, first note that the optimal 
4 performance index starting at time step k + 1, which is embedded 
5 in (9), is 

5. Cauchy optimal model predictive controller 37 

The Cauchy m-step optimal model predictive controller is 38 

determined by maximizing a moving, fixed-horizon performance 39 

index that is a function of all the measurements up to the current 40 
time but no future ones. The performance index is defined as the 41 

6 max E 
 
ψ 


XN , U N −1  

Zk  1 

U N −1 
k+1 

1 0 
 + expected value of the objective function in (6) using ℓ = k (i.e., 42 

the current time) and n  = k + m  t:. p, where m is the size of a 43 

7 = max 
  ∞  

· · · max 
∞ 

E 


ψ 


XN , moving horizon. The expectation is carried out over the stochastic 44 

uk+1 ∈Fk+1    −∞ uN −1 ∈FN −1     −∞ 
 

variables associated with the states in this moving horizon, i.e., 45 

the future process noise, and the current measurement history. As 46 

8 U N −1  
| ZN 

 
fz N |σN −1 (zN  |ZN −1 ) dzN opposed to dynamic programming, here we define the predictive 47 

control sequence as Up−1 , where every element in it is in F ; 48 
k k 

9 · · · fzk+2 |σk+1 (zk+2 |Zk+1 ) dzk+2 . (10) 

10 Using the above, the performance index (9) can be restated as 

i.e. uℓ ∈ Fk   ∀ ℓ = k, . . . , p − 1. Hence, the performance index 49 

is given as 50 

∗ 
         

p
 p−1 

 

11 0,N  =  ∞ 
  ∞ 

max · · · 
 

max 
 ∞ 

 
max E 


ψ 


XN , 

Jk,p max E   ψ 
p   1 

Uk 

Xk+1 , Uk , (15) 51 

−∞  u0 ∈F0    −∞ uk ∈Fk 
N    1 

−∞ k+1 where  E [·] is the expectation taken over Zk and Xp
 k+1 . It is 52 

12 U N −1  
| Zk     

 
f (zk 1 |Z ) ψ (·, ·) of (6) is bounded by one for 53 

0 + zk+1 |σk + k    important to note that since all Xk+1  and Uk      , the performance index Jk,p    = E 

 

X 54 

k+1 

p p−1 ψ p       , 
13 · · · fz1 |σ0 (z1 |Z0 ) fz0 (z0 ) dzk+1 · · · dz1 dz0 . (11) Up−1 

  
of (15) always exists and is finite.    

∧
 

The optimal performance index of (15) is restated as 56 

14 To construct the dynamic programming solution, define the opti- 
15 mal return function as J ∗          

p
 

1 
       

k
 

16 k+1,N  (Zk+1 ) t:. max E 
 
ψ 


X1 , U0 

 
Zk+1 


 

k,p max E  E 
p   1 

Uk  
ψ  Xk+1 , Uk  Z 57 

 
J̄ ∗ 

U N −1 
k+1 

N N −1  
= E    max E 

 
ψ 


 , Up−1 

  
 t:. E 


J ∗  

, (16) 58 

17 × fzk+1 |σk  (zk+1 |Zk ) · · · fz1 |σ0 (z1 |Z0 ) fz0 (z0 ) , (12) p   1 k+1 k     k Zk 
Uk 

18 which is the integrand of the most inner integral in (11). Then, the 
19 sought after dynamic programming recursion rule becomes 

  ∞ 

where the Fundamental Lemma (Speyer & Chung, 2008, Chapter 59 

9) is used to interchange the maximization and expectation 60 

operations.  The  current  control  uk   is  found  as  a  function  of 61 

the current information pattern that includes both current and 62 

20 J̄ k,N (Zk ) = max 
uk ∈Fk 

J̄ k+1,N  (Zk+1 ) dzk+1 . (13) 
−∞ 

past measurements and the past control inputs. An important 63 

characteristic of the objective function ψ (·, ·) is that for the Cauchy 64 

21 This is the general form for the recursion rule from which the op- 
22 timal performance index is determined by 

 ∞ 
J ∗ ¯∗ 

densities the conditional performance index JZk  of (16) can be 65 

determined in a closed form and the optimal control signal can be 66 

determined by maximizing this expression. 67 

Up until now we have considered that the control uk is adapted 68 

23 0,N  = J0,N (Z0 ) dz0 . (14) 
−∞ to the σ -algebra σk generated by the measurement history, Zk . 69 

24 A method for obtaining the conditional pdf’s needed to evaluate 
25 the expectations in (12) is presented in Idan and Speyer (2010) and 
26 reviewed in Appendix A. It can be verified that the functional de- 
27 pendence of these conditional pdf’s on the measurements is very 
28 complex, making the integration and maximization required in 
29 (13) intractable.6  The main difficulty arises from the need to av- 
30 erage over future measurements. 
31 Alternatively, a model predictive controller that does not av- 
32 erage over future measurements and can therefore be constructed 
33 more feasibly. Although sub-optimal, it will produce a practical and 
34 computable control solution for a system with Cauchy noises. This 
35 paper considers an m-step horizon optimal model predictive con- 
36 troller, which is developed in the next section. 

 

 
 
 

6 Note that for a Gaussian system with a multiplicative objective function 
constructed from the product of exponentials with quadratic arguments, (13) 

However, if the state is decomposed into a dynamic system that 70 

contains all the underlying random variables and another dynamic 71 

system only driven by the control, then the determination of the 72 

optimal control is not only simplified, but indeed tractable. Given 73 

this decomposition, we show that the control has to be adaptive 74 

to only the σ -algebra generated by the measurement history of 75 

the decomposed state associated with the underlying random 76 

variables. 77 

Consider the linear, discrete-time, scalar stochastic system of 78 

(1) with the measurement history given by (4). Let uk be adaptive to 79 

the filtration σ -algebra σk generated by the measurement history 80 

Zk . Filtration implies that the collection of σ -algebras σk have the 81 

property that if j  ≤ k, then σj   ⊆ σk  (Fleming & Rishel, 1975). 82 

Therefore, filtration is the evolution of the σ -algebra generated 83 

by measurement history through time. Adaptation means that 84 

the control is a measurable function of events on this σ -algebra, 85 

i.e., this ensures that the control sequence is causal. Now consider 86 

the decomposition xk  = x̃ k + x̄ k where 87 

produces a linear controller — the LEG controller (Speyer & Chung, 2008, Chapter 
10). However, if the objective function is constructed from a sum of exponentials 
with quadratic arguments, the solution to (13) appears intractable. 

x̃ k  = Φx̃ k−1 + wk−1 , 
x̄ k  = Φx̄ k−1  + uk−1 , 

z̃ k  = Hx̃ k + vk , (17a) 88 

z̄ k  = Hx̄ k . (17b) 89 



 



, (20) 
2 

p−1 
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1 Here, x̃ k  and z̃ k  are the state and the measurement of the subsystem 
2 containing all the underlying random variables, i.e., wk , vk , and the 

of Appendix A and presented here for convenience as 54 

k+2 
3 initial condition x̃ 0 , which is Cauchy distributed with zero median 

f 
   ai (k|k)x̃ k + bi (k|k)   

4 similar to (3). Similarly, x̄ k  and z̄ k  are the state and measurement 
5 of a dynamic system driven by uk   with initial condition x̄ 0 . The 

x̃ k |σ̃ k x̃ k |Z̃  k | = 
i=1 


x̃ k − λi (k|k)


 

55 

+ ωi (k|k) 
6 initialization of either system is arbitrary and does not affect the 
7 simplicity introduced by the decomposition, as long as the sum of 
8 the initial value of (17b) and the median of x̃ 0  equals the given x̄ 0 . 
9 The measurement history can be decomposed as Zk  = Z̃  k + Z̄  k 

10 where 

where the conditional pdf is explicitly conditioned on the σ - 56 

algebra σ̃ k  generated by Z̃  k , the stochastic part (17a) of the de- 57 

composed system in (17). The update and propagation of the 58 

conditional density, expressed as the propagation equations for 59 

ai (k|k), bi (k|k), λi (k|k) and ωi (k|k), as well as their boundary con- 60 

ditions, are given in Appendix A. Note that the measurement enters 61 

11 Z̃  k = {z̃ 0 , . . . , z̃ k }, Z̄  k  = {z̄ 0 , . . . , z̄ k }. (18) the conditional pdf in a nonlinear way through the λ k+2 (k|k) = 62 

12 In the following it is shown that the control is measurable on events 
13 generated by Z̃  k  only. 

14 Theorem 1.  Consider the filtration σ -algebra σ̃ k   generated by Z̃  k , 
15 with the decomposition Zk   = Z̃  k  + Z̄  k . For Z̃  k   ∈ σ̃ k  and σ̃ k−1  ⊂ 
16 σ̃ k , Z̄  k is adapted to σ̃ k−1 and uk is adapted to σ̃ k . 

17 Proof.  Start  with  k    =  0.  The  initial  state  is  decomposed  as 

z̃ k /H term used in the measurement update stage. In addition, due 63 

to the state decomposition of (17), the conditional pdf in (20) is 64 

independent of the control variable. 65 

5.2. Construction of performance index 66 

The conditional pdf and its propagation relations reviewed in 67 
Appendix A can be used to derive an analytical expression for 

18 x0   = x̃ 0  + x̄ 0 , where x̄ 0  is a given non-random parameter. The the conditional performance index J 
68 

in (19) as a function of the 69 

19 measurement decomposes as z0   = z̃ 0  + z̄ 0 , where z̄ 0   = Hx̄ 0  is a p−1 Z̃  k 

20 given non-random parameter and z̃ 0  = Z̃  0  ∈ σ̃ 0 . Then, u0 , which is control sequence Uk     . First, (6) is used in (19) to yield 70 

21 determined by z0 , is adapted to σ̃ 0 . At k = 1, both x̄ 1 = Φ x̄ 0 + u0       
p
 p−1 

  
22 and z̄ 1    =  Hx̄ 1  are adapted to σ̃ 0 , and thus Z̄  1  is adapted to σ̃ 0 . 
23 For the measurement at k  = 1, z̃ 1  ∈ σ̃ 1 , Z̃  1  ∈ σ̃ 1 , and σ̃ 0  ⊂ σ̃ 1 . 
24 Hence, since u1 is determined by Z1  = Z̃  1 + Z̄  1 , it is adapted to 

JZ̃  k   
= max E 

Uk 

ψ 
 

p−1 

Xk+1 , Uk 

 Zk 71 
 

  
 

25 σ̃ 1 . Recursively to any k, Z̄  k is adapted to σ̃ k−1 . With Z̃  k  ∈ σ̃ k , and = max E 
p−1 

 
Mx (xi   1 )M (u ) Z̃  72 

26 Q4  σ̃ k−1  ⊂ σ̃ k , uk that is determined by Zk  = Z̃  k + Z̄  k is adapted to Uk i=k 
 

27 σ̃ k . • 
28 Due to the result of Theorem 1, i.e., that the control is adapted 

 ∞ 
= max · · · 

  ∞ p−1 
Mx (xi+1 )Mu (ui ) 73 

29 to σ̃ k , the conditioning on Zk  can be replaced by Z̃  k . With these 
p−1 

k −∞ −∞ i=k 
 

30 substitutions, the optimization or maximization step of the model 
31 predictive control problem is restated as 

× fx̃ p ···x̃ k    1 |σ̃ k 


x̃ p , . . . , x̃ k+1 |Z̃  k | dx̃ p , . . . , dx̃ k+1 . (21) 74 

J ∗ 
     

p
 p−1 

  Here, fx̃ p ···x̃ k+1 |σ̃ k 


x̃ p , . . . , x̃  k+1 |Z̃  k 

 is the conditional joint density, 75 

32 Z max E 
p   1 

Uk 

ψ  Xk+1 , Uk 
 Zk

 
 determined from the one-step projected conditional pdf of (A.17) 76 

and the state transition pdf’s that are influenced by the process 77 
      

p
 p−1 

  noise, and is determined ∧by 78 
33 max E 

p   1 
Uk 

ψ  Xk+1 , Uk 
 Zk

 
 

fx̃ p ···x̃ k+1 |σ̃ k 


x̃ p , . . . , x̃ k+1 |Z̃  k |


 79 

 
34 t:. max J t:. J ∗  . (19) 

p−1       k Z̃  k = fx̃ p |x̃ p−1 ···x̃  k+1 σ̃ k 


x̃ p |x̃  p−1 , . . . , x̃  k+1 , Z̃  k | 80 
Uk 

× fx̃ p−1 |x̃ p−2 ···x̃ k+1 σ̃ k 


x̃ p−1 |x̃ p−2 , . . . , x̃ k+1 , Z̃  k |


 · · · 81 

35 In the model predictive control operation mode, although the op- 
36 timal control sequence is determined over the prediction inter- × fx̃ k+1 |σ̃ k 


x̃ k+1 |Z̃  k 


 

 


x̃ p−1 |x̃ p−2 | 82 · · · 83 

37 val from k to p, only the current control input uk at time step k is = fx̃ p |x̃ p    1  


x̃ p |x̃ p−1 | fx̃ p    1 |x̃ p    2 


 

38 applied to the system. Then, at subsequent time steps, the perfor- 
39 mance index in (16) is maximized again to compute a new optimal 

− 

× fx̃ k+2 |x̃ k+1 


x̃  k+2 |x̃  
− 

k+1 

− 

|
 

fx̃ k   1 |σ̃  


x̃  k+1 |Z̃  k 

 , (22) 84 

40 control sequence, the first element of which is applied to the sys- while from (2) and using the Markov property of (17a), the 85 
41 tem. 
42 The conditional pdf needed to evaluate (19) can be determined 

transition probability is 86 

43 using the results in Idan and Speyer (2010). Next, we briefly fx̃  |x̃  


x̃ j+1 |x̃ j 
 

=   β/π   (23) 87 

44 review those results and show how they are used to express JZ̃  k 

45 analytically. 
j+1   j (x̃ j +1 − Φx̃ j )2 + β2 

for j = k, . . . , p − 1. Substituting (22) into (21) we obtain 88 

46 5.1.  Propagation of the conditional pdf 

47 In Idan and Speyer (2010) it was shown that the conditional pdf 
JZ̃  k   

=  max 
Uk     ∈F 

 ∞ 

−∞ 
· · · 

 ∞ 

−∞ 
Mx (xp )Mu (up−1 )fx̃ p |x̃ p−1 


x̃ p |x̃ p−1 |


 89 

48 discussed above can be determined analytically in a closed form.     
49 It was obtained by expressing the pdf as a sum of terms, each of 
50 which is a rational function of the random variable. The number 

× dx̃ p · · · Mx (xk+1 )Mu (uk )fx̃ k+1 |σ̃ k x̃ k+1 |Z̃  k | dx̃ k+1 . (24) 90 

51 of terms in this sum grows with time and the parameters of these 
52 terms are updated during the time propagation and measurement 
53 updated steps. The posteriori form of the conditional pdf given the 

measurement history up to the current time is presented in (A.12) 

Due to the rational polynomial structure of both the associated 91 

pdf’s presented earlier and of the objective function ψ (·, ·) in (6), 92 
∧the above integrals can be carried out analytically. However, for 93 

presentation simplicity, we will derive a closed form result when 
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1 the state only at the prediction horizon p = k+m is weighted in the 
2 objective function of (6). This is obtained by letting ηi+1 → ∞, i = 
3 k, . . . , p − 2, which yields Mx (xi+1 ) = 1, i = k, . . . , p − 2. In this 
4 case the conditional performance index to maximize becomes 

sequence that yields this particular x̄ ∗ is not unique (clearly it is 46 

unique when m  = 1.) One such sequence, which assumes that 47 

uj , j = k, . . . , p − 1 is constant, is given by 48 

x̄ ∗ − Φm x̄ k 

5 J ∗ 
p−1  ∞ 

  uj = m−1 ,  j = k, . . . , p − 1. (29) 49 

Z̃  k   
= max 

Uk i=k 

Mu (ui ) Mx (xp )fx̃ p |σ̃ k 

−∞ 
 

x̃ p |Z̃  k | dx̃ p . (25)  
Φ i

 

i=0 

6 The conditional pdf fx̃ p |σ̃ k 


x̃ p |Z̃  k |  is obtained by time-propagating Next, we use homotopy to incorporate control penalties back into 50 the performance index. For that, the weights ζj , j = k, . . . , p − 1 51 

7 fx̃ k |σ̃ k 


x̃ k |Z̃  k | 

 

of (20) m times using (A.17)–(A.21) to yield 

 ai (p|k)x̃ p + bi (p|k)   
are set to very high values, thus imposing a small change in the 52 

value of the performance index. Starting with an initial guess for 53 

8 fx̃ p |σ̃ k 


x̃ p |Z̃  k | = 

i=1 


x̃ p − λi (p|k)


 + ωi (p|k) 
. (26) uj , j = k, . . . , p − 1 as in (29), the maximization of JZ̃  k  

is carried 54 

out numerically using the accelerated gradient method (Fletcher 55 

9 The parameters ai (p|k), bi (p|k), λi (p|k) and ωi (p|k) are expressed & Powell, 1963; Myers, 1968) as a refinement step. The process is 56 

10 explicitly using (A.18)–(A.21). The integral in (25) is evaluated 
11 analytically as 

  ∞ 
 

repeated for decreasing ζj s until reaching their design values. 57 

The gradient needed for the accelerated gradient method in 58 

the refinement step in the homotopy optimization method can 59 
be computed analytically by applying the chain rule to (28). The 60 

12 g (x̄ p ) = Mx (xp )fx̃ p |σ̃ k 


x̃ p |Z̃  k | 

−∞ 
dx̃ p partial of the performance index J Z̃  k with respect to uℓ is given by 61 

  ∞ η2 
k+2 a (p|k)x̃   + b (p|k)    

p i p i 
13 

dx̃ p ∂ JZ̃  k p−1 2 2 

j  ℓ 

= 
(x̃  + x̄  )2  + η2 

x̃  − λ (p|k)
2 + ω2 (p|k) = 

 

−∞ p p p   i=1 p i i ∂  2 62 

2   2 2 
k+2 ∞ 2 

p 
14 

ai (p|k)x̃ p + bi (p|k) dx̃  
uℓ j=k   uj  + ζj 

j̸=ℓ 
uℓ + ζℓ = 

(x̃ p  + x̄ p )2 + η2  2 2 p   
i=1     −∞ p    x̃ p − λi (p|k) + ωi (p|k) 

×   Φp−ℓ ∂g (x̄ p ) − 
u2 2uℓ 

2 
 g (x̄ p ) (30) 63 

k+2 
15 = π ηp 


 1 a (x̄   + λ )η + (b  − a x̄  )(η + ω ) , (27) ∂ x̄ p ℓ + ζℓ 

i     p i     p i i   p p i 
ωi 

i=1 (x̄ p  + λi )2  + (ηp  + ωi )2 for ℓ = k, . . . , p − 1, where g (x̄ p ) is given in (27) and its gradient 64 

is 65 

16 where in the last expression the functional dependence of the   
2 

  
2
 

2 
 

17 parameters ai , bi , λi  and ωi  on the time index (p|k) is removed for 
18 brevity. Using this result in (25) yields the following maximization ∂g (x̄ p ) = π ηp 

k+2 
 

ai 
 

 
x̄ p  − λi   + 


ηp  + ωi 


 

66 2 

19 problem ∂ x̄ p i=1 (x̄ p  + λi )2  + (ηp  + ωi )2 

Z̃  k   
= max 


p−1 
 2 

 
g (x̄ ∗). (28) 

2 


x̄ p + λi 
 

ai λi ηp + bi 


ηp + ωi 
 

 
− (31) 67 p−1 u2 2 2 2 

2 

Uk j=k j   + ζj 

p−1 
ωi 


(x̄ p + λi ) + (ηp  + ωi ) 

68 
21 The dependence of JZ̃  k  

on the elements of Uk is given explicitly 
22 in the first term of (28) and implicitly in the second term via x̄ p , 
23 which is obtained by propagating (17b) m times using the control 

Although an analytic form of the second derivative of g (x̄ p ) can be 
determined, it involves a sum of terms that increases the compu- 69 

tation time. Thereby, we use an accelerated gradient method that 70 

24 sequence Up−1 ; hence, x̄  is a function of an open loop control iteratively estimates the Hessian matrix of the performance in- 71 

25 policy from time k to time p − 1, and x̄ p is the maximizing value. dex from an initial guess, and by performing a sequence of one- 72 

26 Note that, as with the a priori conditional pdf in (20), the number dimensional searches. Each such search maximizes the function 73 

27 of terms that determine the performance index in (28) grows 
28 with k. 
29 The conditional performance index in (28) is an extremely 
30 complex function of the m elements in Up−1 . Consequently, there 
31 is no analytical solution to the associated maximization problem. 
32 Hence, a numerical procedure is proposed next to determine the 
33 optimal control signal at each time step k. Since the numerics 
34 use realizations where random variables take on specific values, 
35 regular fonts are used hereon for the state and control. 

 

 
36 5.3.   Homotopy optimization for maximizing JZ̃  k 

along a specific search direction, determined by the gradient and 74 

the current estimate of the Hessian. The search result is used to 75 

update the estimate of the Hessian, which is then used to deter- 76 

mine a new search direction orthogonal to the previous one. For a 77 

quadratic performance index this second order method converges 78 

to the optimum in n steps, where n is the number of variables 79 

being optimized over (Fletcher & Powell, 1963; Myers, 1968). Al- 80 

though the Cauchy performance index is not quadratic, it is approx- 81 

imately quadratic locally around the maximum. Therefore, once a 82 

point sufficiently near the maximum is found, the accelerated gra- 83 

dient method will find this maximum easily. To find this start point 84 
for the accelerated gradient method, the homotopy optimization 

37 To solve the maximization problem in (28) using the homotopy 
38 method, we first address the problem when the contro∧l variable 

85 

method uses a grid search to find the optimal x̄ ∗ and then finds a 86 

predictive control sequence to get from x̄ k to x̄ ∗. From that point, we 87 

39 is removed from the performance index, attained by letting ζj  → do a simple gradient search to get to the quadratic neighborhood 88 
before using the accelerated gradient method to find the optimum. 

40 ∞, j  = k, . . . , p − 1. In this case, JZ̃  k   
becomes a sum of rational 

41 functions of x̄ p . Since x̄ p  is a scalar, a one dimensional search can 
42 be used to determine the global optimum, x̄ ∗. Since there are 
43 no control penalties, this global optimum is focused on keeping 
44 the predicted state small for regulation. Moreover, due to the 

45 deterministic state propagation in (17b), for m  > 1 the control 



89 

6. Numerical examples 90 

To obtain insight into the properties of the Cauchy stochas- 91 

tic controller, the one-step, one-measurement example is first 
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(a) α = 0.1, β = 0.02, γ = 0.5, η1  = 0.7, ζ0  = ∞. (b) α = 0.5, β = 0.02, γ = 0.1, η1 = 0.7, ζ0 = ∞. 
 

Fig. 1.    Contour plots of the performance index for the Cauchy one-step controller. 

 
1 analyzed in Section 6.1. Then, multi-step numerical simulation 
2 results are given in Section 6.2, which illustrate the Cauchy 
3 controllers behavior in the presence of dominant Cauchy measure- 
4 ment noise and then dominant Cauch∧y process noise. The per- 
5 formance of the Cauchy controller is compared with a somewhat 

The optimal controller can be obtained by maximizing (32) with 35 

respect to u . The necessary optimality condition, ∂J ∗  /∂u 0, 36 
Z̃  0 

reduces to finding the roots of the fifth-order polynomial 37 

l5 u5 4 3  2 

6 standard scheme, here the model predictive linear-exponential- 
7 Gaussian (LEG) controller. Although dynamic programming pro- 

0 + l4 u0 + l3 u0 + l2 u0 + l1 u0 + l0 = 0, (33) 38 

where 39 

8 vides a closed-form solution to the LEG problem (Speyer & Chung, l   = 1, l = 3.5z̃  , l = (5.2315z̃ 2
 

9 2008, Chapter 10), the m-step model predictive controller is a bit 5
 

4 0 3 0  + 3.6681) 
10 different and its solution process is much simpler to obtain. The l2 = (3.6806z̃ 2

 0 

0  + 6.6305)z̃  , (34) 40 
11 derivation of the LEG m-step controller, used here for comparison, 
12 is given in Appendix B. Also, in order to compare the Cauchy con- l1  = (0.9491z̃ 4 + 3.2124z̃ 2 + 2.9623), 
13 troller with the LEG controller, a least-squares fit between these l0 = (0.07782z̃ 2

 0 

14 two classes of pdf’s, and thus the objective functions, is given in 
15 Appendix B.1 an∧d used in the subsequent examples. 

0 + 0.3992)z̃  . 
This fifth order polynomial always has at least one real root. If three 41 

 
 

16 6.1. One-step, one-measurement example 

17 To explore the characteristics of the proposed Cauchy con- 
18 troller, in this section we evaluate numerically its simplest form. 
19 Specifically, we examine the value of the optimal control signal at 
20 k  = 0, i.e., u∗(z̃ 0 ), as a function of the first measurement z̃ 0 , that 

roots are real, then there are two local maximum values and the 42 

larger of the two gives the optimal control. A similar expression, 43 

with different numerical values, can be attained also for∧the α > γ 44 

case. 45 

Contour plots of the performance index for the two case 46 

discussed above are shown in Fig. 1, with expanded views given 47 

in Fig. 2. In both cases it is observed that the performance index 48 

has two ridges, with one, marked by the dashed line, being 49 

21 varies due to the measurement noise v0 (Idan et al., 2010), while dominant. This indicates that the solution of (33) had two maxima, 50 

22 considering a one step horizon, i.e., m = 1. The parameters for the 
23 system and Cauchy signals are first chosen as Φ = 1, H  = 1, α = 
24 0.1, β = 0.02, γ = 0.5, and x̄ 0  = 0. This example represents the 
25 case where the uncertainty in the initial condition is smaller than 
26 the measurement noise, i.e., α < γ . To explore the effect of higher 
27 uncertainty in the initial conditions, also the case for which α > γ 

with the higher one being the global maximum. These contours 51 

demonstrate a clear difference in the optimal control action for the 52 

two cases examined. For the first case of α < γ , shown in Figs. 1(a) 53 

and 2(a), the optimal control action u∗ is a nonlinear function of z̃ 0 54 

and is almost aligned with the u0 ≈ 0 line. In the center is an ellipse 55 

28 is considered by choosing the values α = 0.5 and γ = 0.1. shaped contour whose major axis is oriented between the two 56 
ridges. This demonstrates that when the measurement uncertainty 

29 Initially, no penalty is introduced on the control signal in (28), 
30 i.e., ζ0   → ∞, while the state at k  = 1 is weighted with η1   = 
31 0.7. Substituting the system parameters into (28), the performance 

57 

is dominant, the optimal control action is minimal. The optimal 58 

control strategy changes drastically for the α > γ case depicted 59 

32 index becomes 
0.1148(4.1667z̃ 2  − 1.0163u0 z̃ 0  + 1) 

in Figs. 1(b) and 2(b). In this case, the global optimum generates 60 

an approximately linear relation between u∗  and z̃ 0 , indicating 61 
that a significant control action is adopted when the measurement 62 

33 J ∗ 
Z̃  0 

0 
(z̃ 2 + 0.16)(u2 + 0.6724) uncertainty is decreased. 63 

0 0 
This difference in behavior cannot be deduced by examining 64 

34 + 
0.03416(7.5820z̃ 2  + 3.4153u0 z̃ 0  − 1) 

(z̃ 2 + 0.16) 


(u0 + z̃ 0 )2 + 1.22


 
. (32) only  the  conditional  variance  and  conditional  mean  of  the 65 

estimation error at k  = 0, which are given in Idan and Speyer 

 



0 

0 

0 

 
 
 

8 J.L. Speyer et al. / Automatica xx (xxxx) xxx–xxx 

 
 
 
 
 
 
 
 

(a) α = 0.1, β = 0.02, γ = 0.5, η1  = 0.7, ζ0  = ∞. (b) α = 0.5, β = 0.02, γ = 0.1, η1 = 0.7, ζ0 = ∞. 

Fig. 2.  Zoomed in contour plots of the performance index for the Cauchy one-step controller. 

 
     
    
    
    

 
 

(a) α = 0.1, β = 0.02, η1  = 0.7, ζ0  = ∞. (b) β = 0.02, γ = 0.1, η1 = 0.7, ζ0 = ∞. 

Fig. 3.   Cauchy (solid line) and Gaussian (dashed line) one-step controller with parameters variations in α and γ . 
 
 
 
 
 
 
 
 
 
 

(a) α = 0.1, γ = 0.5, η1  = 0.7, ζ0  = ∞. (b) α = 0.1, β = 0.02, γ = 0.5, ζ0  = ∞. 

Fig. 4.   Cauchy (solid line) and Gaussian (dashed line) one-step controller with parameters variations in β and η1 . 
 

1 (2008) as 

2 E 


(x0  − x̂ 0 )2 |z̃ 0 
 

= αγ 

 
 

z̃ 2 

(α + γ )2 

 

 
 

+ 1  , (35) 

Fig. 3(b) examines the case where γ < α for different values 29 

of α. In this case also the Cauchy controller is nearly linear. 30 

Interestingly, the slope of the Cauchy controller, which is hardly 31 

effected by the change α, is nearly identical to that of the LEG 32 

3 where x̂ 0   = αγ z̃ 0 /(α + γ ). This conditional variance represents 
4 the uncertainty in the state estimation and grows with z̃ 2 . Eq. 
5 (35) shows that the values of the conditional variance and the 
6 conditional mean do not change when interchanging the values 
7 of γ and α. Hence, the change in the control strategy is correctly 
8 deduced by the optimal Cauchy control scheme. Specifically, it 
9 correctly reduces the control effort when α  <  γ , i.e., when a 

10 measurement noise impulse is more likely than a large impulse in 
11 the initial condition. Alternatively, a nearly linear control action is 
12 produced when α > γ , i.e., the controller effectively forces the 
13 state back toward the origin when the measurement uncertainty 
14 is relatively small. 
15 To obtain further insight, the performance of the Cauchy con- 
16 troller is compared to the LEG controller, presented in Appendix B. 
17 First, in Fig. 3(a), the optimal Cauchy and LEG control signals are 
18 plotted versus the measurement z̃ 0  for the α < γ case with dif- 
19 ferent values of γ . In this case, for the LEG controller, the optimal 
20 control is given by u∗ = −x̂ 0 and therefore, it is linear in z̃ 0 . Fig. 3(a) 
21 shows that the Cauchy controller is symmetric about z̃ 0    = 0. 
22 Furthermore, the Cauchy controller approaches zero when |z̃ 0 | be- 
23 comes large, while the Gaussian controller remains linear with 
24 respect to the measurement z̃ 0 . This is a significant difference in be- 
25 havior between the Cauchy and Gaussian optimal controllers that 
26 can be deduced analytically from (33). If u∗(z̃ 0 ) is finite, the dom- 
27 inant term in (33) as |z̃ 0 | → ∞ is l1 u∗(∞), or lim|z̃ 0 |→∞ u∗(z̃ 0 ) 

controller. 33 

The effect of parametric changes in β and η1 for the γ > α case 34 

is explored in Fig. 4. In this case, the LEG controller is a single line, 35 

since for ζ0 = ∞, i.e., with no control weighting, the LEG controller 36 

is independent of the parameters β and η1  (see Appendix B). 37 

Exploring this parametric change in the γ < α reveals plots similar 38 

to Fig. 3(b), not shown here for brevity. 39 

Now we consider the cases with control weighting. Reducing 40 

ζ0 from ∞ to 5 has a negligible effect on both the Cauchy and the 41 

LEG controllers. Further reduction in ζ0 , i.e., increase in the control 42 

weighting, affects the control strategies as depicted in Fig. 5. The 43 

nonlinear behavior of the Cauchy controller is retained for the 44 

γ > α cas∧e depicted in Fig. 5(a), while an approximately linear 45 

Cauchy controller is shown in Fig. 5(b) for the γ < α. 46 

For γ  > α, in the region where z̃ 0  is relatively small, the 47 

Cauchy controller is approximately linear (see Fig. 5(a)). However, 48 

the Cauchy controller in Fig. 5(a) for large z̃ 0  goes toward zero. 49 

This is in sharp contrast with the LEG controller, which remains 50 

linear in the measurement. Therefore, the problem of handling 51 

outliers, which occur for the Cauchy pdf, appears to be resolved 52 

by the Cauchy controller explicitly, and not in the filtering or 53 

estimation stage as has been done traditionally. Note that the 54 

controller design process explicitly uses the parameters γ and 55 

α and hence their relative size γ > α, i.e., it anticipates more 56 

impulsive measurement uncertainty than process uncertainty. If 57 

28 → 0. 
∧ γ < α, the Cauchy controller behaves approximately like the LEG 58 
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(a) α = 0.1, β = 0.02, γ = 0.5, η1  = 0.7. (b) α = 0.5, β = 0.02, γ = 0.1, η1 = 0.7. 

Fig. 5.   Cauchy (solid line) and Gaussian (dashed line) one-step controller with parameters variations in ζ0 for γ > α left and γ < α right. 
 

1 linear controller in Fig. 5(b), i.e., it expects more impulsive process 
2 uncertainty than measurement uncertainty. For both the Cauchy 
3 and Gaussian changes in ζ0 make only small changes in the gain. 

 
4 6.2.  Multi-step numerical examples 

5 The dynamic characteristics of the Cauchy optimal controller, 
6 obtained  by  maximizing  the  performance  index  in  (28),  are 
7 explored through several multi-step numerical examples. The 
8 Cauchy optimal control results are compared against the least- 
9 squares equivalent LEG controller, obtained from (B.12) and the 

10 Kalman filter from (B.10). The two examples that are discussed in 
11 this section are a stable system with a horizon length of m = 2 and 
12 an unstable system with a horizon length of m = 5. The param- 
13 eter values of β and γ are interchanged to see how the controller 
14 performance changes when it is designed for a large measurement 
15 noise impulse in contrast to when it is designed for a large process 
16 noise impulse. All simulations in this section use either noise pa- 
17 rameters β = 0.1, γ = 0.02 or β = 0.02, γ = 0.1 and initial 
18 condition: α = 0.5 and x̄ 0  = 0. They also all use the same system 
19 parameter of H  = 1, and either Φ = 0.95 or Φ = 1.05. Substi- 

similarly as shown in Fig. 6(b), demonstrating the same linear 53 

behavior seen in Figs. 3(b) and 5(b). One effect of having β > γ 54 

is that the state trajectories for the Cauchy and LEG controllers 55 

appear equal in Figs. 6(b) and 7(b). Even though the controllers 56 

process the measurements differently, due to the dominance of the 57 

process noise the controls and state appear similar. 58 

Using the same noise sequence, similar results are obtained for 59 

an unstable system with m  = 5, while using ηp   = 0.7 as the 60 

parameter for the penalty on the state at xk+5 and ζi   = 8, i = 61 

k, . . . , k + 4 as the parameter for the control penalty. These re- 62 

sults are depicted in Fig. 7. For the γ > β shown in Fig. 7(a), 63 

the measurement noise impulses are more probable than process 64 

noise impulses. Hence, when a large measurement impulse occurs 65 

at k = 51, the Cauchy controller ignores it, applying almost zero 66 

control, whereas the LEG controller applies a very large control in- 67 

put tha∧t causes the state to deviate away from zero. For the γ < β 68 

case shown in Fig. 7(b), both the Cauchy and the LEG controllers 69 

regulate in a similar fashion. 70 

Finally, the Cauchy controller is examined in simulation with 71 

Gaussian noises, for which the LEG design is optimal. The design 72 
parameters used for the Cauchy controller were obtained by using 

20 tuting these parameters into (28), the performance index is max- 
21 imized numerically with respect to the control at each time using 

73 

the least-square fit relations between the Cauchy and Gaussian 74 

pdf’s presented in Appendix B. Both a stable system with m = 2 75 
22 the homotopy optimization method. 
23 The  performance  of  the  Cauchy  and  LEG  model  predictive 

∧and an unstable system with m = 5 presented earlier were used 76 

24 controllers are compared for m  = 2 and using ηp   = 0.7 as the 
25 parameter for the penalty on the state at xk+2 and ζi   = 8, i  = 

in these simulations. The results are presented in Fig. 8, showing 77 

also the numerical values used in the Cauchy controller design. 78 

26 k, k + 1 as the parameter for the control penalty. First, for γ = 0.1 
27 and β = 0.02, when the noises are small, the Cauchy and the 
28 LEG controllers exhibit similar performance. However, they behave 
29 rather  differently  when  a  large  measurement  pulse  occurs.  A 
30 significant measurement noise pulse causes a large measurement. 
31 A measurement noise pulse does not represent a state deviation 
32 and thus, for proper regulation, the controller should ignore that 
33 measurement. The Cauchy predictive controller, designed for γ > 
34 β, is able to make this distinction, whereas the LEG predictive 

The response of the Cauchy controller is very similar to that of the 79 

optimal (in this case) LEG controller for both cases. This clearly 80 

demonstrates the robustness of the Cauchy controller, which 81 

performs nearly optimally even in the Gaussian noise simulation 82 

for which it was not designed. 83 

7. Conclusions 84 

A new control design paradigm is proposed for optimal con- 
35 controller reacts linearly to all the pulses and does not differentiate 
36 as shown in Fig. 6(a), at around time step k  = 51. The Cauchy 
37 controller ignores this large measurement deviation, applying 

85 

trol problems for scalar linear dynamic system driven by Cauchy 86 

distributed signals. The scalar dynamic programming solution is 87 

38 almost zero control, whereas the LEG controller applies a very large 
39 control input that causes the state to deviate away from zero. An 
40 additional control effort is then required to correct this deviation. 
41 In this way the Cauchy controller manages to avoid unnecessary 
42 actuation and thus maintains the system performance. 
43 Performance differences are also observed when encountering 
44 a large process noise signal. In Fig. 6(a), at time steps k  = 1 and 
45 k = 13 process noise pulses occur, and although both controllers 
46 react to them and are able to overcome this deviation, the Cauchy 
47 controller does so much quicker than the LEG by applying a much 
48 larger control effort. The Cauchy controller applies a larger control 
49 because its gain for small measurement values are higher than that 
50 of the LEG. 
51 When the Cauchy predictive controller is designed for β  > 
52 γ , the behavior of both the Cauchy and LEG controllers perform 

∧ 

intractable. Since the model predictive controller is known to 88 

have similar, though suboptimal, performance, an m-step optimal 89 

model predictive controller was derived. The conditional expecta- 90 

tion of the new objective function with respect to the exact Cauchy 91 

conditional pdf was determined in closed form. The Cauchy con- 92 

troller results were compared against an equivalent LEG m-step 93 

optimal model∧predictive controller. We showed that both con- 94 

trollers behave in a similar way when faced with non-impulsive 95 

Gaussian noises that generate small measurement noise. However, 96 

a dramatic difference was observed between the two controllers 97 

when faced with Cauchy measurement noise sequences with large 98 

pulses. The Cauchy optimal controller ignores measurement noise 99 

pulses and reacts strongly to process noise pulses, effectively dif- 100 

ferentiating between process and measurement noise and thereby 101 

producing a scheme for handling measurement outliers. This 
∧ 
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(a) α = 0.5, β = 0.02, γ = 0.1, Φ = 0.95, ηp  = 0.7, 
ζi  = 8, m = 2. 

(b) α = 0.5, β = 0.1, γ = 0.02, Φ = 0.95, ηp  = 0.7, 
ζi  = 8, m = 2. 

 

Fig. 6.   2-step Cauchy and Gaussian controllers with β and γ parameters interchanged for stable system in Cauchy simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
     

 
 

     
     

 
 

(a) α = 0.5, β = 0.02, γ = 0.1, Φ = 1.05, ηp  = 0.7, 
ζi  = 8, m = 5. 

(b) α = 0.5, β = 0.1, γ = 0.02, Φ = 1.05, ηp  = 0.7, 
ζi  = 8, m = 5. 

 

Fig. 7.   5-step Cauchy and Gaussian controllers with β and γ parameters interchanged for unstable system in Cauchy simulation. 
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(a) α = 0.5, β = 0.02, γ = 0.1, Φ = 0.95, ηp  = 0.7, 
ζi  = 8, m = 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) α = 0.5, β = 0.02, γ = 0.1, Φ = 1.05, ηp  = 0.7, 
ζi  = 8, m = 5. 

 

Fig. 8.   Cauchy and Gaussian controllers for stable and unstable systems in a Gaussian simulation. 
 

1 ability of the Cauchy controller to reject outliers depends cru- 
2 cially on the dominance of the measurement noise over the process 
3 noise. In contrast, the LEG controller is linearly proportional to the 
4 measurements and always reacts to large measurement outliers. 
5 The conditional performance index is a sum that grows at each 

At the initial k = 0 there is only one term in the above sum, with 30 

the initial parameters a1 (0| − 1) = 0, b1 (0| − 1) = α/π , λ1 (0| − 31 

1) = 0, and ω1 (0| − 1) = α. After an additional measurement z̃ k 32 

is obtained, a measurement updated conditional pdf is determined 33 

by 34 

6 measurement update. However, as justified in Idan and Speyer   
7 (2010), the number of terms in the conditional pdf can be truncated fx   σ 


x̃ k |Z̃  k 

 
= fx̃ k ,z̃ k |σ̃ k−1 x̃ k , z̃ k |Z̃  k−1 |  . (A.2) 35 

8 with minimal effect on the performance; in fact, the truncation of ˜k | ˜k fz̃ k |σ̃ k−1 


z̃ k |Z̃  k−1 | 
9 old terms enhances numerical performance for unstable systems. The density function in the above numerator is computed as 36 

10 This result is important for the feasibility of the Cauchy model       
11 predictive controller because it leads to a computationally efficient fx̃ k ,z̃ k |σ̃ k−1 x̃ k , z̃ k |Z̃  k−1 | = fx̃ k |σ̃ k−1 x̃ k |Z̃  k−1 | fVk z̃ k − Hx̃ k | 37 

12 implementation. Finally, generalization of this scheme is being 
13 resolved by first extending the estimator to the multivariable case, 

k+1  
= ai (k|k − 1)x̃ k + bi (k|k − 1) 

38 

14 where the characteristic function of the conditional pdf must be 
15 propagated (Idan & Speyer, 2013). Then, Parseval’s Theorem is used 


x̃   − λ (k|k − 1)

2
 

γ /π 
+ ωi (k|k − 1) 

16 to express the conditional performance index as an integral over 
17 the spectral variables involving the characteristic function of the 


z̃ k − Hx̃ k 


 + γ 2 

. (A.3) 39 

18 conditional pdf (Fernández, Speyer, & Idan, 2013). This formulation 
19 also allows a pathway for the generalization of the scalar stochastic 
20 controller developed here to the multivariable case. 

 
 

21 Appendix A. Algorithm for the propagation of the conditional 

A simple assumption made in Idan and Speyer (2010) guarantees 40 

that the complex conjugate roots in (A.3) of the denominator 41 

polynomial in x̃ k  are distinct. Therefore, using partial fraction 42 

expansions, (A.3) can be written as 43 
k+2 a (k|k)x̃  + b̄  (k|k)   

22 pdf f 


x̃  , z̃  |Z̃  |
 

= 
 ¯ i k i . (A.4) 44 

23 This appendix briefly summarizes the Cauchy estimator derived 
x̃ k ,z̃ k |σ̃ k−1 k     k      k−1 

i=1 


x̃ k − λi (k|k)


 + ωi (k|k) 
24 previously in Idan and Speyer (2010). This estimator is central in 
25 deriving the Cauchy controller discussed in this study. 
26 The conditional pdf of x̃ k  given past data Z̃  k−1 (i.e., before the z̃ k 

This step introduces an additional term in the pdf sum with four 45 

parameters. λi (k|k) = λi (k|k − 1), ωi (k|k) = ωi (k|k − 1), i  = 46 

1, . . . , k+1 represent the unchanged roots of the pdf denominator, 47 

27 measurement is processed) is shown in Idan and Speyer (2010) to while λk+2 (k|k) = z̃ k /H and ωk+2 (k|k) = γ /|H| represent its 48 

28 be expressed in a factored form given by 
k+1 

new complex measurement dependent roots. ā i (k|k) and b̄ i (k|k) 49 

are computed from the partial fraction expansions as 50 

29 


x̃  |Z̃    ai (k|k − 1)x̃ k + bi (k|k − 1)   | 


ā i (k|k)


 


ai (k|k − 1)


 
fx̃ k |σ̃ k−1 k       k−1  2 2 = Fi (k) (A.5) 51 

i=1 x̃ k − λi (k|k − 1) + ωi (k|k − 1) b̄ i (k|k) bi (k|k − 1) 

 



i 

i = 
ω2 

 

2 

¯ i        | 

 
 
  i 

f 

f N 

i i + 

= 2 

2 

51 

15 

k 

 
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1 for i = 1, . . . , k + 1, where 
1 

Next we consider the time propagation from step k to k + 37 

1. Given the conditional pdf in (A.12), our goal is to construct 38  

2 Fi (k) = 
∆ (k)

 fx̃ k+1 |σ̃ k 


x̃  k+1 |Z̃  k | , given by the Chapman–Kolmogorov equation 39 

 
 

3 × 


 δi (k) − 
λi (k|k) 
ωi (k|k) θi (k) − 

1 
ωi (k|k) 

 
θi (k) 

 

 
 

(A.6) 

fx̃ k+1 |σ̃ k 

 


x̃  
∞ 

k+1 

 f 
|Z̃  k | 


x
 

 
x 

 
f 

 
40 

 


x    Z 

 
 

λ2 2 
 k+1   k x̃ k |σ̃ k 

k      k | dx̃ k , (A.15) 41 

  i (k|k) + ωi (k|k) θ (k)   δ (k) λi (k|k)  = x̃ k+1 |x̃ k      ˜ |˜ | ˜ | ˜ 
ωi (k|k) 

4 
ωi (k|k) θi (k) −∞ 

where 42 

2 2 2 
5 δi (k) = (λk+2 (k|k) − λi (k|k)) + ωk+2 (k|k) − ωi (k|k) (A.7a) 

f 
  β/π . (A.16) 

6 θi (k) = 2ωi (k|k) (λi (k|k) − λk+2 (k|k)) (A.7b) 
x̃ k+1 |x̃ k x̃ k+1 |x̃ k | 

x̃ k+1 − Φx̃ k 

 

43 

+ β2 
     π γ 2 2 

7 ∆ (k) 
k+2 (k|k) 


δi  (k) + θi  (k)

 
. (A.7c) Using (A.12) and (A.16), the integral in (A.15) can be computed for 44 

each term in the sum analytically, leading to 45 

8 Note that the matrices Fi (k), i = 1, . . . , k + 1 are not functions of 
9 the numerator parameters ai (k|k − 1) and bi (k|k − 1), generating 

fx̃  k+1 |σ̃ k 


x̃ k+ 1 |Z̃  k | 46 

10 a linear, time-dependent, stochastic update equation (A.5). The k+2 
 ai (k + 1|k)x̃  k+1 + bi (k + 1|k) 

11 numerator parameters of the new term in the pdf sum are 

k+1 

= 
i=1 


x̃ k+1 − λi (k + 1|k)


 + ωi (k + 1|k) 

, (A.17) 47 

12 ā k+2 (k|k) = 
 

ā i,k+2 (k|k) (A.8) 
i=1 

where for i = 1, . . . , k + 2 48 

λ (k + 1|k) = Φλ (k|k) (A.18) 
k+1 

i ω (k 1 k) i Φ ω (k k) 
49 β (A.19) 

13 b̄ k+2 (k|k) = 
 

b̄ i,k+2 (k|k), (A.9) i +  | = |  |  i      |   + 50 

i=1 

14 where for i = 1, . . . , k + 1 


ai (k + 1|k)


 

bi (k + 1|k)  = 


ai (k|k)


 

Gi (k)  bi (k|k) (A.20) 


ā i,k+2 (k|k)
 

F
 


a (k k)


 (k) (A.10a) with 52 

b̄ i,k+2 (k|k) =  i,k+2 b̄ i (k|k)  
sign(Φ) 0 


 

16 and 
 

1 0
 

Gi (k) =  λi (k|k)β 
ωi (k|k) 

ωi (k + 1|k)  . (A.21) 53 

ωi (k|k) 
17 Fi,k+2 (k) = 2 (λi (k|k) − λk+ 2 (k|k))  1 . (A.10b) This shows that the factored pdf structure of (A.1) is regained in 54 

18 Next, fz̃ k |σ̃ k−1 


z̃ k |Z̃  k−1 |

 is determined by integrating the pdf in 

(A.17) after a measurement update and a time propagation step. 55 

19 (A.4) with respect to x̃ k . Due to the modular structure of this pdf, 
20 the integral is evaluated analytically as Appendix B.  Gaussian model predictive controller 56 

21 


z̃  |Z̃  k+2  ā  (k|k)x̃  |  = + b̄ i (k|k) . (A.11) To compare the performance of the Cauchy controller with one 57 
fz̃ k |σ̃ k−1 k     k−1 ω (k k) assuming Gaussian noises, one has to consider: (a) the parameters 58 

i=1 i     | 
22 Finally, the conditional pdf in (A.2) is obtained by dividing the 
23 result in (A.4) by the one in (A.11), yielding 

k+2 

of the Gaussian pdf’s that best approximate the Cauchy pdf’s, and 59 

(b) the objective∧function used to design the Gaussian con∧troller to 60 

be comparable to the one used in the Cauchy noise setting. Those 61 

two items are addressed first in this appendix, which concludes 62 

24 fx̃ k |σ̃ k 


x̃ k |Z̃  k |

 
=  

ai (k|k)x̃ k + bi (k|k) 
2 2 . (A.12) with the solution to the Gaussian controller problem. 63 

i=1 x̃ k  − λi (k|k) + ωi (k|k) 
25 The terms ai (k|k) and bi (k|k) are obtained by dividing ā i (k|k) and 
26 b̄ i (k|k) by the result in (A.11), i.e., for i = 1 · · · , k + 2 

ai (k|k) 

B.1. Normal pdf least squares fit of a Cauchy pdf 64 

To construct a normal or Gaussian pdf that best fits a given 65 

27 ai (k|k) = 
¯ 

  (A.13) Cauchy pdf, the following optimization problem is solved 66 

fz̃ k |σ̃ k−1 z̃ k |Z̃  k−1 | 
  ∞ 

C N  2 

28 bi (k|k) = b̄ i (k|k) 
  . (A.14) 

ξ ∗ = arg min 
σ 

 
X  (x) − fX   (x)


 

−∞ 
dx, (B.1) 67 

fz̃ k |σ̃ k−1 z̃ k |Z̃  k−1 | where the Cauchy pdf is 68 

29 (A.12) indicates that the pdf structure defined in (A.1) is main- 
30 tained in factored form after a measurement update with one ad- C    µ/π   
31 ditional term in the pdf sum.  fX  (x) = 

x2 
,  µ > 0 (B.2) 69 + µ2 

32 It should be pointed out that fx̃ k |σ̃ k  


x̃ k |Z̃  k | of (A.12) could 

33 be used to compute the state estimate and its estimation error 
34 covariance. This result is not shown here, because it is not used 

and the normal pdf is given by 70 

−x2 /(2ξ 2 ) 
35 in deriving the Ca∧uchy controller. The interested reader is referred 
36 to Idan and Speyer (2010) for details. X    (x) = 

e       
√ 

2π ξ 
,   ξ > 0. (B.3) 71 
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1 Solving the integral in (B.1) analytically and equating its derivative 
2 with respect to ξ to zero yields the nonlinear equation 

where x̄ p and Mp are the state estimate and error variance at time 40 

p of a Kalman filter, generated from the update equations (Speyer 41 

d  
 ∞ 

  
µ/π 

3 

e−x  /(2ξ  ) 
2 


 

− √  


 
1 

= √   
& Chung, 2008, Chapter 9) 42 

      VMk   

dξ   −∞ 
 

x2 + µ2 2π · ξ  
κ2 

2π · ξ 2 

1   
 

x̂ k  = x̄ k + Pk H/V (zk − Hx̄ k ),  Pk  = 
V + H2 Mk 

, (B.10a) 43 

× 


1 + κ2  
1 − erf 

√ 
κ

 
e 2   − 

κ 
−  √ and propagated to time p from time k using 44 

4 2 √ 
2π 2   2 xk+1 Φx̂ k uk , Mk+1 Φ2 Pk W . (B.10b) 45 

5 = 0, (B.4) 
¯ = + = +

 
6 where κ = µ/ξ . This equation clearly indicates that the optimal ξ Using (B.9) in (B.8) and solving the integral gives 46 

7 is proportional to µ, i.e., ξ ∗ = κ0 µ, where κ0 is the solution of (B.4). 
    

qp x̂  2   +p−1 
 

r u2 

8 The latter can be solved only numerically to yield κ0  ≈ 1.3898. 
— 2    Mp qp +1 

e i=k    i   i 

9 Consequently, the equivalent corresponding 
10 Gaussian optimal control problem are chosen as 

e−(x0 −x̄ 0 )2 /(2M0 ) 

pdf’s  for  the 
∧ JGZ    = 

Mp qp + 1 
p−1 

, (B.11a) 47 

11 fX0 (x0 ) = √
2π M0 

,   M0  = κ2 α2
 (B.5a) x̄ p  = Φ x̂ k  + 

 

i=k 
Φp−1−i ui . (B.11b) 48 

12 fWk (wk ) = e−w2 /(2W ) 
√ 

2π W 
,   W  = κ2 β2

 

 

(B.5b) 
The control input sequence that maximizes this objective function 49 

is found analytically. The control input applied at time k is the first 50 

element of the optimal control sequence u, found in (B.12), as 51 

−v2 /(2V ) 2    2 ∗  T −1   T m  
13 fVk (vk ) = √ 

2π V ,   V  = κ0 γ . (B.5c) uk  = − (QS  S + R) S  Q Φ x̂ k , (B.12) 52 

where 53 

qp 

14 B.2.  Linear-exponential-Gaussian (LEG) m-step optimal model pre- 
15 dictive controller 

S = 


Φm−1 · · ·   Φ 1
 

, Q    = Mp qp + 1 
, (B.13) 54 

16 To best approximate the Cauchy objective function of (6) in 
17 the Gaussian case, an exponential objective function is chosen. 
18 Since only the dynamic programming solution to the LEG problem 
19 available (Speyer & Chung, 2008, Chapter 10), the m-step optimal 
20 model predictive LEG controller is derived here. 
21 The LEG performance index is 

and R is a diagonal matrix with ri , i = 1, . . . , m along its diagonal. 55 

For the inverse in (B.12) to exist, it is sufficient that qp  ≥ 0 and 56 

that the matrix R be positive definite, which means that ri  > 0 ∀i. 57 

Note that in the Gaussian case the multiplicative form of the objec- 58 

tive function allows a very simple analytical form of the optimal 59 

control. The same is true for the dynamic programming solution, 60 

where the objective function composed of sums of exponentials 61     
1 

        
2
 p−1 

2 
  

22 J ∗ E    E 
p   1 

Uk     ∈F 
e− 2   qp xp +


 

ri ui  Zk 
 

appears intractable. 62 
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Abstract—An optimal predictive controller for linear, vector- 
state dynamic systems driven by Cauchy measurement and 
process noises is developed. For the vector-state system, the 
probability distribution function (pdf) of the state conditioned 
on the measurement history cannot be generated. However, the 
characteristic function of this pdf can be expressed in an analytic 
form. Consequently, the performance index is evaluated in the 
spectral domain using this characteristic function. By using an 
objective function that is a product of functions resembling 
Cauchy pdfs, the conditional performance index is obtained 
analytically in closed form by using Parseval’s equation and 
integrating over the spectral vector. This forms a non-convex 
function of the control signal, and must be optimized numerically 
at each time step. A two-state example is used to expose the 
interesting robustness characteristics of the proposed controller. 

 
I. INTRODUCTION 

Models in modern stochastic optimal control algorithms like 
the linear quadratic Gaussian (LQG) and the linear exponential 
Gaussian (LEG) assume linear dynamics and additive process 
and measurement noises described by the Gaussian probability 
density function (pdf). The Gaussian distribution function has 
very light tails, so that large deviations are essentially impos- 
sible. Therefore, the LQG and LEG algorithms do not perform 
well in the presence of heavy-tailed or impulsive uncertainties. 
In many practical applications, such as radar and sonar systems 
affected by atmospheric and underwater acoustic noises, more 
impulsive uncertainties are observed [1]. Impulsive behavior 
is also more effective at modeling adversarial motion, as is 
air turbulence, which is better described by distributions with 
heavier tails than the Gaussian [2]. 

Therefore, in this paper we propose a system model that 
assumes linear dynamics driven by additive process and mea- 
surement noises described by Cauchy pdfs. Both the Cauchy 
and Gaussian pdfs belong to a class of distributions called 
the symmetric α-stable (Sα-S) class, whose members are 
described by their characteristic functions. A full treatment 
of the Sα-S class can be found in [3]. The Cauchy pdf is 
in a subset of this class whose members have infinite second 
moments. In addition, the mean of the Cauchy pdf is not well 
defined. 

Algorithms  for  optimal  estimation  and  control  of  scalar 
linear  systems  driven  by  Cauchy  distributed  process  and 
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Research, Award No. FA9550-10-1-0570, and by the United States - Israel 
Binational Science Foundation, Grant 2008040. 

measurement noises have been developed previously in [4, 5]. 
There, the conditional performance index for model predic- 
tive control is determined directly by taking the conditional 
expectation of the objective function using the probability 
density given the measurement history as presented in [4]. A 
dynamic programming algorithm is also developed in [5]. It is 
shown that the solution to the dynamic programming recursion 
is intractable because of the need to average over future 
measurements in determining the optimal return function. 

In this paper, the Cauchy optimal control algorithm for 
scalar systems [5] is extended to systems with a vector state. 
For the vector case, the conditional pdf (cpdf) given the mea- 
surement history is not available. However the characteristic 
function of the cpdf can be recursively propagated [6, 7]. The 
significant contribution in this paper is evaluating, in closed 
form, the conditional performance index using the cpdf’s 
characteristic function instead of the cpdf itself, and integrating 
over the spectral variables instead of the state variables. 

Although the cpdf is not available as a function of the state 
vector, the conditional expectation of the objective function, 
i.e. the conditional performance index, can be computed using 
the characteristic function of the cpdf, which is available as 
a function of the spectral vector [7]. The objective function 
is cast as a product of functions resembling Cauchy pdfs, 
which are easily transformed into a function of the spectral 
variables. Consequently, the conditional performance index is 
found in a closed form. Due to its complexity, the optimal 
control signal is determined by numerically optimizing this 
conditional performance index in a model predictive control 
setting. 

The remainder of the paper is structured as follows. The 
controlled system model is presented in Section II. An ap- 
propriate, computable performance index for this problem is 
presented in Section III and subsequently transformed from 
the state variable to the spectral variable form. In Section IV 
the spectral integrations required to determine the conditional 
performance index are reduced to an integral formula that can 
be evaluated in closed form. Section V addresses a special 
case of systems with two states. Here, using an alternative, 
simplified form of the two state cpdf’s characteristic function, 
the conditional performance is determined in closed form. In 
Section VI numerical examples are given. Conclusions are 
given in Section VII. 
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II. DESCRIPTION OF THE MODEL 

This paper deals with a discrete time, linear system de- 
scribed by 

x(k + 1) = Φx(k) + Λu(k) + Γw(k) 

The above decomposition will be used to derive the Cauchy 
controller. 

Let the state, measurement, and control histories used in the 
control problem formulation be defined as 

z(k) = Hx(k) + v(k) 
(1) XR    := {x(R), . . . , x(m)}, (9a) 

where x(k) ∈ Rn  is the state vector, u(k) is a scalar deter- Zk := {z̃(0), . . . , z̃(k)}, (9b) 
ministic input, z(k) is a scalar measurement, and w(k) and U m 
v(k) are scalar independent Cauchy distributed process and 

, UR    ∈ F (9c) 

measurement noise inputs with medians at zero and scaling 
parameters of β and γ, respectively, so that their pdfs are 
given by 

where F is the class of piecewise continuous functions adapted 
to the σ-algebra σk generated by the measurement history, i.e. 
the control is a random variable that is measurable with respect 

fWk   w(k)  = 
β/π 

w2(k) + β2 ,  fVk   v(k)  = 
γ/π 

v2(k) + γ2 . (2) 
to events in σk  [8]. Moreover, in [9] it is shown that uk  is 
adapted to the σ-algebra σ̃k  generated by  ˜ , which means 

The characteristic functions of these pdfs are 
that the control is measurable on events generated by  ˜ only. 

φWk (σ) = e− β|σ| ,  φVk (σ) = e −γ|σ| , (3) III. DERIVATION OF THE COST USING CHARACTERISTIC F 

where σ is the scalar spectral variable. 
The  initial  conditions  are  assumed  to  be  independent 

Cauchy distributed random variables with the pdfs 
n 

UNCTIONS 

Our proposed controller is an m-step model predictive 
controller [10] that uses current and past measurements, and 
averages over future process noise. At each time step, the 

fX0 (x(0)) = 
n αi/π   

(x (0) − x̄ (0))2 + α2 (4a) 
conditional performance index is computed. Since the perfor- 
mance index will be shown to be a nonconvex function of 

i=1 i i i 

Its characteristic function is given by 
n 

the control sequence, it is maximized numerically. Once the 
optimal control sequence of length m is computed, only the 
first control in that sequence is applied. At the next step, a new 

n 
αi νi +jx̄ i (0)νi φX0 (ν) = e−    |   | 

i=1 
. (4b) measurement is taken and the process is repeated, producing a 

new optimal control sequence and applying only the first one. 
where νi  is an element of ν ∈ Rn. 

The  stochastic  system  (1)  can  be  decomposed  into  two 
systems, one driven by u(k) and one by w(k), by exploiting 
the linearity of the system. Let x̄(k) and z̄(k) be the part of the 
system driven by the control u(k) only, and x̃(k) and z̃(k) be 
the part of the system driven by the process noise w(k) only 
and contains all the underlying random variables. Then, 

x(k) = x̄(k) + x̃(k) (5a) 
z(k) = z̄(k) + z̃(k). (5b) 

In this paper, we study the optimal stochastic state regulation 
problem, noting that the tracking problem can be handled in 
a similar fashion. Our regulation problem will have a finite 
horizon of length m such that the terminal state occurs at 
time-step p = k + m. 

Similar to the scalar control problem presented in [5], the 
control objective function is chosen as a product of Cauchy- 
like functions given by 

 
The controlled part of the system is described by 

    
p 
k+1 , U p−1

  
p−1 I ζ /π n η /π 

\
 

x̄(k) = Φx̄(k − 1) + Λu(k − 1) (6a) 
n i 

u2(i) + ζ2 

n i+1,r · 
x2(i + 1) + η2 .   (10) 

z̄(k) = Hx̄(k) (6b) i=k i r=1  r i+1,r 

with initial condition x̄(0). The process noise driven part is 
given by 

x̃(k) = Φx̃(k − 1) + Γw(k − 1) (7a) 

Then, the the performance index conditioned on the current 
measurement history and averaged over future process noises 
is given by 

z̃(k) = Hx̃(k) + v(k). (7b) ∗ 
k,p 

=  max 
U p−1 ∈F 

        
p 
k+1 , U p−1

   
The process and measurements noise pdfs were defined in (2), p p−1      ˜ 

   
while the initial condition of this stochastic model is Cauchy 
distributed with a pdf given by 

=  max  E  E  ψ 
U p−1 ∈F 
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fX̃0 
(x̃(0)) =  x̃2 

αi/π 
2 . (8a) 

= E max  E  ψ 
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Its characteristic function is 
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n n 

i (0) + αi 
 
 
−αi |νi | 

 
where the interchange of the maximum and expectation oper- 
ations is due to the fundamental theorem in [11]. 

We are now concerned with determining the analytic form 
φX̃0 

(ν) = e 
i=1 

. (8b) for the conditional performance index J ̃  
Zk 

.  Using  (10),  it 
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becomes IV. THE CONDITIONAL PERFORMANCE INDEX 
J ˜  = E  ψ   X p , U p−1      ˜ 

  Consider the integral over νn  in (15), 
Zk k+1 k  Zk 

r∞ I n \  p−1 I n         \   l n 
ηp,r Er ,ν | j x̄(p),ν  

= E  
n

 n ηi+1,r /π 
x2 2 

ζi/π ·  2 2 
˜  Zk In = e− | e 

r=1 φX̃ ˜ (ν)dνn 
p |Zk 

i=k r=1 r (i + 1) + ηi+1,r u (i) + ζi −∞ 
n r r∞ p−1 I n η /π ζ /π 

\
    

ηp,r | Er ,ν |+j x̄(p),ν  

= 
n n 

x2 

i+1,r i 
2 ·  2 2 

− 
= e  r=1 φX̃p | ˜k (ν)dνn (16) 

i=k −∞ 
r=1 r (i + 1) + ηi+1,r u (i) + ζi −∞ 

× fW (x̃(p)|x̃(p − 1)) · · · fW (x̃(k + 2)|x̃(k + 1)) The cpdf for the state x̃(k) is denoted as fX̃k |Z̃k 
. The unnor- 

˜ malized cpdf (ucpdf) is denoted as f̄ ˜ ˜  = fX̃ ˜  · f ̃  × fX̃k+1 | ̃ k 
(x̃ (k + 1)|Zk )dx̃1(k + 1) . . . dx̃ n(k + 1) where f is the pdf of the Xk |Zk k |Zk Zk Z 

˜ measurement history and has × dx̃1(k + 2) . . . dx̃n(k + 2) . . . dx̃1(p) . . . dx̃n(p) (12) a  kno Zk 

alue.  In  [12, 13],  the  characteristic  function  of 
For now, let us only consider weighting on the terminal state, 
x(p), and on the m scalar control inputs. The control weighting 

wn  v 
the ucpdf φ̄ ̃   ˜ (ν) is recursively propagated; the charac- 

Xk |Zk 

teristic  function  of  the  normalized  cpdf  is  φX̃k | ̃ k 
(ν)  = functions MU    np−1

 ζi /π 
can come out of the integral. 

φ̄ ̃    ˜ ˜ ˜ ¯ 
i=k u2 (i)+ζ2

 

Then, the product over i inside the integrand in (12) has only the term for i = p − 1, and the integral is only over Xk |Zk 
(ν)/fZk 

, where fZk  
= φX̃k | ˜ (ν)|ν=0. From [12, 13] 

the form of the characteristic function of the ucpdf at time k 
is shown to be k  k

 φ̄ ̃    ˜ 
| \ k|k 

yei  (ν) 

{x̃1(p), . . . , x̃ n(p)}. Thus, for notational convenience we can 
drop the time-step index in this integral and write it over 
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(17c) 
× fX̃p | ̃ k 

(x̃|Zk )dx̃1 . . . dx̃n.  (13) 
˜ 

R=1 
and  the  parameters  nk|k ,  nk|k ,  qk|k ,  pk|k ,  ak|k ,  bk|k

 

 
 are 

The cpdf fX̃p | ̃  (x̃|Zk ) can be evaluated in closed form for t e,i iR iR iR i 
scalar systems [4]. However, for vector state systems it is the 
characteristic function of the cpdf, φX̃p | ˜ (ν), that is evaluated 
in closed form. Therefore, when computing the conditional performance index, we need to be able to integrate over the 

generated sequentially from k = 0. 
For the MPC algorithm, the characteristic function of the 

ucpdf is to be propagated through the stochastic dynamics to time k + m = p. This characteristic function φ̄ ̃  ˜ 
 

spectral variable ν instead of the pdf variable x̃ . 
 

φ̄ ̃  
 

˜ (ν) = φ̄ ̃  
Xp |Zk 

(ν) is 
˜ (ΦmTν)φW ((Φm−1Γ)Tν) 

Define the product over r in the integral in (13) as Rx and 
its Fourier transform as Lx, 

Xp |Zk 
 
 

k|k 

Xk |Zk 

× · · · × φW ((ΦΓ) 
 
ν)φW (Γν) 

n 

Rx(x̃ + x̄) = 
n

 ηi+1,r /π 2 (14a) 
nt 

i  (ygi(ΦmTν))ey 
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ei (ΦmT ν) 

r=1 
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x̃r  + x̄r 

 
 2 

i+1,r i=1   ( m−1 

Lx(ν) = 
n 

e−ηp,r |νr | − jx̄ r . (14b) 
r=1 

× exp — β   Φ Γ, ν   − · · · − β |(ΦΓ, ν)| − β |(Γ, ν)| 
(18) 

Using these definitions, we can apply Parseval’s equation over 
each variable in (13) to express the conditional performance 
index as an integral over the spectral variable ν, 

r∞ 

In (18) we add m terms  to  the  sum  in  yk|k (ν) of  (17c). 
By combining the exponent in (16) with that in (18), the 
combined exponent in the integrand of (16) has in total of 
nk|k + m + n real terms, and the imaginary part is composed 

J ̃   = 
M L∗

x (ν) · 
φX̃ 

(ν) dν . . . dν of two components. Define the following terms 
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−∞ p̄iR = ηpR, āk|k = r for R=1,...,nei 

× φX̃p | ̃ k 
(ν) dν1 . . . dνn, (15) 

where L∗
x is the complex conjugate of Lx. The next section 

 
and 

 
 
b̄k|k 

iR 
 
 

k|k 

 
 

k|k 

r=R−(nei  +m) 
 

k|k 



shows how to evaluate these n nested integrals sequentially in i = bi + x̄ p, n̄ei    = nei   + m + n (19b) k|k k|k k|k 
closed form. qtR     = 0 for R = nei   + 1, . . . , n̄ei 



n n 
k|k 

n 

∈ 
r 

∞ n 

i 

iR 

Xp 

iR 
i 

M M 

P 

iR   , ν iR 
k|k 

iR 
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Using these definitions, the integrand in (16) becomes The convolution integral in (24) is shown in [12, 13] to have 
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a closed form solution composed as a sum with n̄ iR    terms, 
ψ(ν) = 

\ 
ψi(ν) = 
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gk|k (ȳk|k (ν)) · eȳei   (ν) (20a) each of which is structurally similar to the terms in ψi(ν). 
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That is, there will be a new g function which is a function of 
signs of inner products of ν̂ . 
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\  Therefore, this integration process can be repeated until all 
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qiR  sgn āiR  , ν (20b) of the integrals are taken, and a closed form solution of the 
conditional performance index is determined. This pattern will 
be seen in the next section, where the conditional performance 
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  + j   biR  , ν (20c) index for the two state system is explicitly obtained. 
V. THE CONDITIONAL PERFORMANCE INDEX FOR A 

The integration in (16) is performed for each element of ν T SECOND ORDER SYSTEM 
in turn. Beginning with νn, decompose ν = 

I
ν̂  

ν̂  Rn−1. Then, 
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νn
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Now, let us limit our discussion to a second order system in 
order to use the structure for the cpdf’s characteristic function 
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ψi(ν)dν presented in [7]. We use this alternate, two state structure for 

the characteristic function of the cpdf in order to make the 
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ψi(νn, ν̂)dνn dν̂  (21) (17c), which produces fewer terms in the sum, as well as a 
simpler, closed form representation for the gk|k coefficients in 

The objective is to reduce the inner integral in (21) to a form 
that is obtained  in closed  form using  the integral  formula 
developed in [12, 13]. First, since āk|k multiplies ν in the sign 

(17a). 
The structure for the characteristic function for the ucpdf is 

given by 
Nk 
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 ãk|k 
 
 , where ãk|k is 
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− −ãiR νn . (22) which consists of a sum of Nk  similar terms. Each of these 

In order to rewrite (22) in a form consistent with the integral 
formula in [12, 13], −ãk|k is divided out of the second term. 

terms has a coefficient Gi(ν) and an exponential whose argu- 
ment involves a sum of absolute values equivalent to (17c). In 

If ãk|k = 0, then the term e   \ 
iR  ,ν̂ loses dependence on ν the exponential argument: there is a sum of Li absolute value 

iR n terms; the P R and ZR values represent real, scalar constants 
and it is removed from the inner integral in (21). Therefore, only ãk|k  /= 0 needs to be considered. Let (22) be  rewritten where P R 

k,i k,i 
R 
k,i 

k,i 

iR k,i > 0; the B s are 1 × 2 row vectors, called the 
as fundamental  directions;  and  the  M R represent integers that 1

āk|k 
\ k|k 

  k|k 
    k|k index the fundamental directions that multiply ν. 

iR   , ν = ãiR 
   

âk|k 

  sgn   
\ 

−ãiR µiR    − νn (23a) All of these parameters correspond with those of the struc- 
ture for the cpdf’s characteristic function presented in Section where µk|k = iR      , ν̂  . Therefore, the elements in (20b) R R k|k 

iR k|k — iR IV. The Pk,i  and Zk,i  parameters correspond to piR and 
R and (20c) are bk|k Mi 

qk|k  1  
k|k 

\  
 

k|k 
 

k|k 
i ,respectively, and the fundamental directions Bk are the 

same as the ak|k  vectors. 
iR   sgn āiR  , ν = q̄iR  sgn µiR    − νn (23b) The coefficients Gi(ν) equal the gk|k  from (17a), and are 

p̄k|k  
1   k|k , ν̂ 

\    = ρ k|k 
    k|k 

  
− νn (23c) rational polynomial of sums of sign functions, given by 

iR iR iR iR 
1 f 

M 1 M 2 

where q̄k|k = qk|k sgn  −ãk|k     and ρk|k = pk|k  ãk|k . Using Gi(ν) = ai + bisgn Bk 
i ν sgn Bk 

i ν 
iR iR iR iR iR iR (2π)n these definitions, the inner integral of (21) is of the form 1 2 

+jcisgn  BMi ν + jdisgn  BMi ν 
l
 

r∞ 
ˆ
 \ r∞ k|k k k 

ei 
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ψi(ν)dνn = e i
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\ 

q̄k|k sgn 
iR µk|k − νn    

iR 
Li −2 ( 

k  1   
R=1 × i i 

−∞ −∞ 


n̄ k|k  R=1 jθk−R + γ + Sk−R(Bk ν) 
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× exp 
\ 

ρk|k µk|k — νn  + jb̃ k|k νn dνn. (24) 
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R        M R T
 

M R
 

 
I2 = 

r∞ 

Gi(ν1, ν2) 

Sk−R(Bk ν) = Pi 
r=1 

i Bk−r 
sgn Bk 

i ν , (26b) −∞ 
i 
k 

1 θi 1 i T 2 2 i T R R k,i R k,i 
k−R = zk−R − Zk Bk−RH — Zk Bk−RH . (26c) × exp   − Pk,i   Bk,1    ν1 + Bk,2    ν2   − η2 |0 + ν2| 

The arguments yk|k (ν) of gk|k , given in (17b), correspond to 
R=1 

 
 

I 2 \ l 
gi i R R k,i 

the Si (Bk ν) defined above. + j 
R=1 

Zk,iB k,2 ν2 + jx̄2ν2 dν2.   (31) 

Next, the transformed objective function in the performance 
index is given by 

L∗
x(p)(ν) = e−ηp,1 |ν1| + jx̄1ν1 − ηp2 |ν2| + jx̄2ν2 (27) 

where, since k will be a constant through this process, the 
time subscript of x̄(p) is replaced with element subscripts as 

The integral I2 is over the ν2 variable, but it also contains ν1 
in the absolute value terms in the argument of the exponential. 
In order to solve it, we need to use the integral of absolute 
values method presented in [7], which requires writing the 
integral in the form given in 

x̄(p) = [x̄1 
becomes 

x̄2].  The  2-state  specific  version  of  (15)  then 

U   r∞ 

 
I2 = 

∞ 
Li +1 

˘ 
\ 

Gi 

 
ρ̆Rsgn (µR 

 

− σ) 
J ̃   = 

M L∗ (ν1, ν2) · φ ̃  ˜ (ν1, ν2) dν1ν2 R=1 −∞ Zk (2π)2 
−∞ 

x(p) Xp |Zk  
k +1 

 
r∞ × exp − 

\ 
ρR |µR − σ| + jξk σ dσ,   (32) 

= 
MU exp (  η   ν η   ν   + jx̄  ν + jx̄  ν ) R=1 

(2π)2 
−∞ 

− 1 | 1| − 2 | 2| 1    1 2  2 

as was done in obtaining (24). That method involves defining 
Nk 

 
Lk a set of scalar constants ρR and ξi , as well as scalar variables 

× 
\ 

Gi(ν) exp − \ R
 

k,i 

   M 
 Bk

 
R k,i     

      µR that depend on ν1, and thus are constants in this integration. 
R 

i=1 R=1 In this derivation, we assume that all the Bk, 
i
 /= 0. Then, I 

M R    
\ l we can construct a {µ } k

 

set that transforms I into the +j 
\

 ZR   B k,i ν  dν.   (28) 
Li +1 

R 1 2 

R=1 
k,i  k integral of absolute values structure. This assumption does not 

M R 

affect generality, because if one of the Bk, 
i
 does equal zero 

The integral with respect to ν2 is now taken. We use a second 
subscript to denote the individual elements of the rows of Bk 

for some i, then it would multiply the ν2  variable by 0 and 
thus, that absolute value term would not be a function of ν2 R 

Bk 
i = 

R 
i Bk,1 

M R   
Bk,2 . This allows us to decompose the and would come out of I2  and integrated later. 

complex part of the exponential argument as The set of variables, denoted {µR}, is constructed as 
 

M R M R 

 
M R  
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where  

M R 

= −Bk, 
i (µR − ν2) (33a) 

R=1 
 

and rewrite J ̃   as 

R=1  
µR = 

i  −Bk,1  1 

M R 
i Bk,2 

R ∈ {1, . . . , Li }, i ∈ {1, . . . , Nk  1} 
Zk 

1 
Ip−1 ζ /π 

\
 

 0 R = Li + 1.  
(33b) 

J ̃   = 
Zk (2π)2 

n i 
u2(i) + ζ2 Similarly, for the argument of the exponential, we can con- 

Li 

Nk   r∞ 
i=k i 
I 2  I \ 

struct a set of {ρR}1 
\ k +1 as 

\ \ M R ( R   × exp −η1 |ν1| + jx̄1ν1 + j ZR   B k,i    ν1
 P i −BMi   R ∈ {1, . . . , Li }, i ∈ {1, . . . , Nk  1} 

 i=1  R=1 
k,i k,1 ρR = k k,2 k − i 

−∞ 

∞  i M R 

η2 R = Lk + 1 
(33c) × Gi(ν) · exp − 

\
 k,i  Bk ν − η2 |ν2| and a scalar number ξ  as 
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P R 
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\ 
R R

 (33d) 

−∞ 
I 

M R    
\ \ ξk = x̄2 +  

R=1 
Zi Bk,2 . 

+j 
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R=1 

R 
k,i 

k,i Bk,2 ν2 + jx̄2ν2 dν2dν1. (30) The solution to an integral of an exponent of absolute values 
requires dividing the domain of integration into regions in 
which the integrand is continuous. Since Gi(ν) is piecewise- 

Denote the inner integral with respect to ν2  in (30) as I2: constant,  its  discontinuities  lie  on  the  boundaries  of  these 
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2 

regions,  and  hence  Gi(ν) is  treated  as  a  constant  in  each 
integral. In order for the Gi(ν) coefficients to be consistent 
with the form in (32), use the tilde, bar, and hat substitutions 
similar to the measurement update process described in [7] in 
order to write Gi in (31) as  ˘ : 

Di,m · |ν1| = 

 
D̄ i,m · sgn (ν1) = 

Li +1 
\ 

R=1,R/=
m 
k +1 
\ 

R=1,R/=
m 
i 

ρR |µR − µm| (37a) 

 
ρRsgn (µR − µm) (37b) 

k +1 
Gi(ν1, ν2) → ¯  

\ 
ρ̃ sgn (µ 

Li +1 
− σ) , 

\ 
ρ̄ sgn (µ − σ) , D̆ i,m · sgn (ν1) = 

Lk +1 
\ 

ρ̆Rsgn (µR − µm) (37c) 
Gi R R 

R=1 
R R 

R=1 
 

ξ̂ i 
R=1,R/=m 
i 

k +1 Li +1 
 k · ν1 = ξk · µm. (37d) \ 

(Li −2)ρ̂ sgn (µ σ) , . . . , 
\ 

(1)ρ̂ sgn (µ σ) Denote the outer integral with respect to ν in (30) by R R − R R −  Li ∞ 1 

R=1 
Li 

R=1 I1 =  
k +1 \ 
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˘ 
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R=1 × exp −Dm · |ν1| + jξ̂  ν1 exp (−η1 |ν1| + jx̄1ν1) 
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× exp  j 
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\ 
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\\ 

k,i Bk,1 

 
dν1 

The sums in the rational polynomial Gi(ν) contain different ρ̆ 
constants but the same set of sgn (µR − σ). Hence, it is written 
as ˘ for shorthand. 

 
 

i 
k 

= 
\ 
m=1 

R=1 
 

{ai,m + j di,msgn (ν1)} 

Then, let σ = ν2  in order to write the one-dimensional −∞   
integral in (32). The solution is given as a sum of Li  + 1 
terms as 

× exp — Dm + η1 
  

|ν1| 
2 l \ 
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+j ξ̂ i + x̄1 + 
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ZR  B k,i   ν1
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 R R m k  
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process for a scalar system [4]. Its solution is given by 
k +1  

 i 
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jξi − ρm + 
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ˆ + x̄1 + 
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+  Dm + η1  
(39) 

R/=m 
 

Finally, the conditional performance index in (30) is given by 
 

1  
Ip−1  ζ /π \ N  Li +1 

  \ \ 
This complicated looking (35) simplifies readily into a simple, 
double-sided scalar integral over ν1, 

J ̃   = 
Zk 

 
2π2 
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i=k 

i 
u2(i) + ζ2 

  
× 

i=1 m=1 
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M R   

l  
ai,m  Dm + η1   − di,m x̄1 +     ZR   B k,i 

  k,i  k,1   Li 
k +1 

î 
 R=1 
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I2(ν1) = {ai,m + j di,msgn (ν1)} · e−Dm · |ν1| + j ξk ν1 .     

ˆ
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R M R    
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m=1  
(36) 

 
k + x̄1 + 

  
R=1 

k,i 
k,i  k,1 +  Dm + η1 


 

This simplification is  based on algebraic  relations used in 
the estimator’s measurement update process in [7], as well 
as constants Di,m, D̄ i,m, and D̆ i,m defined as 

This   closed   form   conditional   performance   index   is 
non-convex  and  depends  on  the  control  input  sequence 
{u(k), . . . , u(p − 1)} in  a  complex  way;  specifically,  the 



parameters ai,m, di,m, and x̄1 depend on the control sequence. 
Thus, we maximize (40) numerically using the accelerated 
gradient search method [14]. The optimization is done in two 
steps: first, the global optimum of the double sum term in (40) 
without the control weighting terms is optimized with respect 

The complexity of evaluating the cost grows as the number 
of terms increases across time steps, as indicated in (40). For 
implementable control, this growth needs to be arrested. The 
full information characteristic function of the ucpdf (25) is ap- 
proximated by a characteristic function of a ucpdf conditioned 

to 
I
x̄1 x̄2

1 
= x̄(p); then, that final state is used to generate on a fixed sliding window of the most recent measurements, 

a control sequence as an initial guess for the second, local 
accelerated gradient search optimization step. 

VI. NUMERICAL EXAMPLES 

Here, we present two sets of examples, the first of which 
shows the optimal control u(0)∗ versus the measurement z(0) 
for the  first measurement  update only,  and the  second set 
shows two multi-step examples. All of these examples use 
a two-step horizon, i.e. m = 2, so that there exists a control 
sequence that can drive our two-state system to the origin over 
this horizon length. However, as we are using model predictive 
control, only the first control input of this sequence is applied 
at that time step. 

All of our examples compare our Cauchy optimal model 
predictive controller with a similar LEG model predictive op- 
timal controller. The LEG estimator assumes that the stochastic 
inputs are described by the Gaussian pdfs that are closest, in 
a least squared sense, to the given Cauchy pdfs; and the LEG 
controller assumes that its objective functions of the state and 
control resemble scaled Gaussian pdfs that are closest, in the 
least-squared sense, to the scaled Cauchy pdfs in (10). The 
LEG controllers’ responses are shown in dashed lines in the 
figures. 

The first set of examples are shown in Fig. 1. These 
figures show the applied optimal control input at the first time 
step, k = 0, given the first measurement. In the two cases 
presented, all the systems parameters are the same, except in 
Fig. 1(a) γ > α1 = α2 (i.e. more measurement than state 
uncertainty), and in Fig. 1(b) α1 = α2 > γ (i.e. more state 
than measurement uncertainty). 

The example in Fig. 1(a) shows that the Cauchy controller 
reduces its control effort to zero as the measurement deviations 
become large. This is in contrast to the LEG controller, which 
is linear  and  thus  responds strongly  to  large  measurement 
deviations.  This  behavior  in  the  Cauchy  controller  occurs 
when the  measurement  uncertainty  is larger  than  the  state 
uncertainty.  In  the  opposite  case  shown  in  Fig.  1(b),  the 
measurement has less uncertainty than the state. In this case, 
the Cauchy controller’s response closely matches that of the 
LEG in a neighborhood of the origin, and in fact responds even 
more strongly than the LEG for large measurement deviations. 

The three different curves in both of these figures represent 
the response for three different control weights: no control 
weight, ζ0  = 10, and ζ0  = 5. As expected, heavier control 
weights (i.e. smaller ζ) reduce the control effort, but even 
without any control weighting, the response in Fig. 1(a) goes 
to zero for large measurement deviations. The fact that this 
behaviour is seen when there is no control weighting implies 
that the attenuation of the control signal for large measurement 
deviations is due to the cpdf and not the objective function. 

taken  here  to  have  length  eight.  The  relative  error  in  the 
approximation appears to be 10−6 or smaller. 

The second set of examples are shown in Fig. 2. All of the 
plots show the state, control, and noise histories for the given 
simulations. The difference between Fig. 2(a) and Fig. 2(b) 
is that the process noise β and the measurement noise γ 
parameter values are interchanged. 

It  is  interesting  to  compare  Fig.  2(a)  with  Fig.  2(b)  in 
light  of  Fig.  1.  In  Fig.  2(a),  there  is  more  uncertainty  in 
the state process noise than in the measurement noise. When 
large  measurement  deviations  occur  (such  as  at  k  = 52), 
the Cauchy controller’s effort is very small. In contrast, the 
LEG controller responds with a large control effort that drives 
the states from their regulated state of zero. However, when 
large process noise inputs occur, the state deviates and the 
Cauchy controller applies a larger control effort than the LEG, 
thus regulating the state more effectively. This suggests that 
when the measurement noise density parameter dominates the 
process noise density parameter in constructing the Cauchy 
controller,  the  effect  of  measurement  outliers  is  mitigated, 
while still responding to state deviations due to process noise. 

On the other hand, in Fig. 2(b) there is more uncertainty in 
the state than in the measurement, and the Cauchy controller 
behaves very much like the linear LEG controller. The state 
trajectories and control inputs of the Cauchy and LEG con- 
trollers appear equal, but actually their differences are much 
smaller than the scale of the axis and cannot be seen. This 
suggests that, when the stochastic parameters allow it, the 
Cauchy controller follows the measurement more. It responds 
in a more linear fashion to the measurements, imitating the 
performance of the LEG controller in that setting. 

This behavior is seen again when both controllers face 
Gaussian noises, as in Figure 2(c). Here, the Cauchy controller 
closely follows both the control and state trajectories of the 
LEG, which is the true optimal solution. Hence, the Cauchy is 
robust under non-impulsive noise environments, as it closely 
approximates the true optimal solution given by the LEG. 

 
VII. CONCLUSIONS 

An optimal stochastic controller was derived for vector- 
state, linear, discrete-time systems with additive process and 
measurement Cauchy distributed noises. Since the Cauchy 
distribution has an undefined mean and an infinite second 
moment, we cannot use standard objective function, e.g., the 
expected value of a quadratic function of state and control 
variables. Therefore, a new and computable objective function 
was defined. Opposed to previous work, the characteristic 
function of the cpdf of the state given the measurement 
history and the Parseval’s equation are used to express the 
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Fig. 1. Parameters used are: η = [1 1], β = 0.02, ΓT = [1 1], ΛT = [1 1], 
and the eigenvalues of Φ are 0.2455 ± j0.1523. 

 
conditional performance index in a closed form. This closed- 
form conditional performance index is optimized numeri- 
cally using an accelerated gradient search. Examples are 
presented that show how our vector state Cauchy controller 
compares against an equivalent LEG controller, demonstrating 
the Cauchy controller’s performance and improved robustness 
over its Gaussian counterpart. 
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Abstract—An  optimal  predictive  controller  for  linear,  vector-state but by their characteristic functions (CFs). They are of the form 
dynamic systems driven by Cauchy measurement and process noises is φ(ν) = e−σ |ν|α +jµν , where σ is the scaling parameter, µ is the 
developed. For the vector-state system, the probability density function 

(pdf) of the state conditioned on the measurement history cannot be 
generated. However, the characteristic function (CF) of this pdf can be 
expressed in an analytic form. Consequently, the  performance  index 
used for the controller design is evaluated in  the  spectral  domain 
using this CF. By taking the conditional expectation of an objective 
function that is a product of functions resembling Cauchy pdfs, the 
conditional performance index is obtained analytically in closed form by 
using Parseval’s identity and integrating over the spectral vector. This 
forms a deterministic, non-convex function of the control signal and the 
measurement history that must be optimized numerically at each time 
step. A two-state example is used to expose the interesting robustness 
characteristics of the proposed controller. 

 
 

I. INTRODUCTION 

Control of dynamic systems in real world applications, from en- 
gineering and science to economics and finance, frequently involves 
handling uncertain, stochastic inputs. These uncertainties affect both 
the  actual  state  of  the  system  as  well  as  the  measurements  that 
the controller depends on. When designing controllers for stochastic 
systems, it is often assumed that the uncertainties are described by 
Gaussian probability density functions (pdf), due to the efficiency 
with which modern methods handle them. For linear systems, al- 
gorithms like the linear quadratic Gaussian (LQG) and the linear 
exponential Gaussian (LEG) assume linear dynamics and additive 
process and measurement noises described by the Gaussian pdf [1]. 

In many applications the underlying random processes have an 
impulsive character producing deviations of high amplitude and small 
duration much more often than the Gaussian assumption permits 
[2].  Examples  of  such  processes  include  radar  and  sonar  noise 
[3] and disturbances due to air turbulence [4]. Another application 
is adversarial missile guidance, where the target is intelligent and 
desires to evade missile. In missile guidance, uncertainties are usually 
assumed to be Gaussian. However, optimal target evasion maneuvers 
involve high acceleration rate maneuvers, i.e. a high amplitude and 
small duration input [5]. Hence, a control algorithm assuming that 
the target is driven by a light tailed distribution would not capture 
this behavior. The Gaussian distribution function has very light tails, 
so that large deviations are extremely unlikely. Therefore, the LQG 
(H2) and LEG (H∞) algorithms do not perform well in the presence 
of heavy-tailed or impulsive uncertainties. 

Impulsive  uncertainties,  like  those  mentioned  in  the  examples 
above, are  better described  by  heavy-tailed distributions,  such  as 
the symmetric alpha-stable (SαS) distributions [6]. These distribu- 
tions are described not by their probability density functions (pdfs), 
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median, ν is the spectral variable, and the characteristic exponent 
α determines the type of distribution: α = 2 implies the Gaussian 
distribution, and α = 1 implies the Cauchy distribution. 

Estimation assuming Cauchy distributed noises has shown im- 
proved performance over Gaussian estimators when faced with im- 
pulsive noises. For estimating the direction of arrival of a signal 
to a sensor array in [7], maximum likelihood estimators designed 
assuming Cauchy distributed noises were shown to exhibit perfor- 
mance very close to the Cramèr-Rao Bound against SαS noises 
with characteristic exponents 1 ≤ α ≤ 2. Similar performance was 
observed in various applications, including processing data in a multi- 
user communication network [8] and radar glint [9]. However, these 
studies are only for estimation of the signal, or signal parameters, 
and do not attempt to control their respective systems. This paper 
derives a framework for control of multivariate linear systems driven 
by Cauchy distributed measurement and process noises. 

Algorithms for optimal estimation and control of scalar linear sys- 
tems driven by Cauchy distributed process and measurement noises 
have been developed in [10, 11]. There, the conditional performance 
index for model predictive control is determined by taking the 
conditional expectation of the objective function using the probability 
density given the measurement history as presented in [11, 12]. A 
dynamic programming algorithm is also developed in [12]. It is 
shown that the solution to the dynamic programming recursion is 
intractable because of the need to average over future measurements 
in determining the  optimal  return  function.  This  cannot  be  done 
in closed form due to the complex dependency of  the  optimal 
return function on the measurement history. Hence, the dynamic 
programming solution was approximated using the model predictive 
control method. 

In this  paper,  the Cauchy  optimal  control  algorithm for  scalar 
systems [12] is extended to systems with a vector state. For the vector 
case, the conditional pdf (cpdf) given the measurement history is not 
available. However, the CF of the cpdf can be recursively propagated 
for such vector state systems [13–17]. In particular, [16, 17] presents 
an efficient algorithm for the two-state Cauchy estimator. Although 
this control methodology can be applied to general vector-state 
systems in [13, 14], the closed form expression for the conditional 
performance index used in the control problem will be based on the 
structure presented in [16, 17]. 

The significant contribution of this paper is evaluating in closed 
form the conditional performance index using the cpdf’s CF instead 
of the cpdf as in [12]. Preliminary results can be found in [18]. 
The objective function is cast as a product of functions resembling 
Cauchy  pdfs,  which  are  easily  transformed  into  functions  of  the 
spectral variables. Consequently, the conditional performance index, 
found in a closed form, is a deterministic function of the control and 
measurement histories. Due to its complexity, the optimal control 
signal  is  determined  by  numerically  optimizing  this  non-convex 
conditional performance index in a model predictive control setting. 

The remainder of the paper is structured as follows. The controlled 
system model is presented in Section II. An appropriate, computable 
performance index for this problem is presented in Section III and 
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subsequently transformed from the state variable to the spectral 
variable form. In Section IV the spectral integrations required to 
determine the conditional performance index are reduced to an 
integral formula that can be evaluated in closed form. Section V 
addresses a special case of systems with two states, using the efficient 

Its CF is  
 

φX̃1 
(ν) = 

 
 
 n 
n 
 
i=1 

 
 
e−αi |νi | 

 
 
 
. (8b) 

algorithm presented in [17]. Here, using an alternative, simplified 
form of the two state cpdf’s CF, the conditional performance is 
determined in closed form. In Section VI numerical examples are 
given, demonstrating the performance of the Cauchy controller under 
both Cauchy and Gaussian noise conditions. Conclusions are given 
in Section VII. 

 
II. DESCRIPTION OF THE MODEL 

This paper deals with a discrete time, linear system described by 
x(k + 1) = Φx(k) + Λu(k) + Γw(k) 

(1) 
z(k) = Hx(k) + v(k) 

where x(k) ∈ Rn is the state vector, u(k) is a scalar input, z(k) 

is a scalar measurement, and w(k) and v(k) are scalar independent 
Cauchy distributed process and measurement noise inputs with me- 
dians at zero and scaling parameters of β and γ, respectively, so that 
their pdfs are given by 

The above decomposition will be used to derive the Cauchy con- 
troller. 

 
 
 

III. DERIVATION  OF  THE  COST  USING  CHARACTERISTIC 
FUNCTIONS 

 

 
Our proposed controller is an m-step model predictive controller 

[19] that uses current and past measurements, and averages over 
future process noise. At each time step, the conditional performance 
index is computed. Since the performance index was found to be 
a non-convex function of the control sequence, it is maximized 
numerically. Once the optimal control sequence of length m is 
computed, only the first control in that sequence is applied. At the 
next step, a new measurement is taken and the process is repeated, 
producing a new optimal control sequence and applying only the first 
one. In this paper, we study the optimal stochastic state regulation 

fW  w(k) = 
  β/π   ,  fV   v(k) = 
w2(k) + β2

 

  γ/π   . (2) 
v2(k) + γ2

 

problem, noting that the tracking problem can be handled in a similar 
fashion. Our regulation problem will have a finite horizon of length 

The CFs of these pdfs are 

φW (σ) = e−β|σ|,  φV (σ) = e−γ|σ|, (3) 

where σ is the scalar spectral variable. 
The  initial  conditions  are  assumed  to  be  independent  Cauchy 

m such that the terminal state occurs at time-step p = k + m. 
Let the state, measurement, and control histories used in the control 

problem formulation be defined as 

Xk+1 := {x(k + 1), . . . , x(p)}, (9a) 

distributed random variables with the pdfs 
n 

˜ 
Zk 

p−1 
:= {z̃(1), . . . , z̃(k)}, (9b) 

p−1 

fX1 (x(1)) = 
n

 
i=1 

αi/π 
(xi(1) − x̄ i(1))2 + α2

 
. (4a) 

 
 where 

Uk := {u(k), . . . , u(p − 1)}, Uk ∈ F , (9c) 
 is the class of piecewise continuous functions adapted to the 

Its CF is given by F 
σ-algebra σk generated by the measurement history, i.e. the control 

n is a random variable that is measurable with respect to events in σk φX1 (ν) = 
n 

e−   |  |
 

[20]. Moreover, in [12] it is proven that u is adapted to the σ-algebra 
i=1 αi νi +jx̄i (1)νi , (4b) k 

σ̃k  generated by  ˜ , which means that the control is measurable on 
where νi  is an element of ν ∈ Rn. events generated by  ˜ only. 

The stochastic system (1) can be decomposed into two systems, 
one driven by u(k) and one by w(k), by exploiting the linearity 
of the system. Let x̄(k) and z̄(k) be the part of the system driven 
by the input u(k) only, and x̃(k) and z̃(k) be the part of the system 
driven by the process noise w(k) only and contains all the underlying 

Similar to the scalar control problem presented in [11, 12], the con- 
trol objective function is chosen as a product of functions resembling 
Cauchy pdfs, given by 

 
p p−1

  
random variables. Then, ψ  Xk+1, Uk p−1 

(  
ζ /π   n η /π 

\
 

x(k) = x̄(k) + x̃(k) (5a) 
n i n 

u2(i) + ζ2  
· i+1,r 

x2(i + 1) + η2
 .   (10) 

z(k) = z̄(k) + z̃(k). (5b) i=k i   r=1  r i+1,r 

The controlled part of the system is described by 

x̄(k + 1) = Φx̄(k) + Λu(k) (6a) 
z̄(k) = Hx̄(k) (6b) 

Then, the the performance index conditioned on the current mea- 
surement history and averaged over future process noises is given by 

k,p =  max 
E 

I
ψ 

  k+1, Uk 

 l
 

with initial condition x̄(1), i.e., the median of (4a). The process noise 
driven part is given by 

J ∗ p−1 

Uk      ∈F 

p p−1 

X 
 

  ˜ 
x̃(k + 1) = Φx̃(k) + Γw(k) (7a) =  max E  E  ψ  X p , U p−1

    

z̃(k) = Hx̃(k) + v(k). (7b) U p−1 ∈F 
  k+1 k 

 Zk 

  l 
   

,  (11) 
The process and measurements noise pdfs were defined in (2), while = E max E  ψ  X p , U p−1      ˜   E   J ∗ 

the initial condition of this stochastic model is Cauchy distributed U p−1 ∈F k+1 k k ˜ 
Zk 

with a pdf given by 
n 

fX̃1 
(x̃(1)) = 

 
 
 x̃ 2

 

 
 
αi/π 

 
 

2 . (8a) 

where the interchange of the maximum and expectation operations is 
due to the fundamental theorem [1]. 



i=1 i (1) + αi We are now concerned with determining an analytic form for the 
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conditional performance index J ̃  , where using (10) it becomes 

Zk 
IV. THE  CONDITIONAL  PERFORMANCE  INDEX 

Consider the integral over νn  in (15), 
J ̃   = E  ψ     p

 p−1      ˜ 
  ∞ ( n \ n 

Zk 
Xk+1, Uk Z In = e−ηp,r |(Er ,ν)| ej(x̄(p),ν)φ p|k (ν)dνn  p−1 
( n         \   l r=1 

= E  
n

 n ηi+1,r /π 
x2 2 

ζi/π ·  
2 2 ˜ −∞  Zk r n 

i=k r=1 r (i + 1) + ηi+1,r u (i) + ζi 
−      ηp,r |(Er ,ν)|+j(x̄(p),ν) 

= e  r=1 φp|k (ν)dνn, (16) 
r∞ p−1 

( n   η  /π        ζ  /π  
\

 

= 
n n 

x2 

i+1,r i 
2 

·  
2 2 

−∞
 

i=k 
−∞ r=1 r (i + 1) + ηi+1,r u (i) + ζi where Er is the rth column of the n-dimensional identity matrix. The 

× fW (x̃(p)|x̃(p − 1)) · · · fW (x̃(k + 2)|x̃(k + 1)) cpdf for the state x̃(k) is denoted as fX̃k |Z̃  . The unnormalized cpdf ˜ (ucpdf) is denoted as f̄ ˜   ˜ 
˜   ˜ ˜ ˜ 

× fX̃k+1 | ̃  (x̃(k + 1)|Zk )dx̃ 1(k + 1) . . . dx̃n(k + 1) 
× dx̃ 1(k + 2) . . . dx̃n(k + 2) . . . dx̃ 1(p) . . . dx̃n(p).    (12) 

Xk |Zk 
= fXk |Zk 

·fZk 
, where fZk 

is the pdf of 
the measurement history and has a known value. In [13, 14], the CF of 
the ucpdf φ̄ (ν) is recursively propagated; the CF of the normalized 
cpdf is φk|k (ν) = φ̄ (ν)/f ̃  , where f ̃  = φ̄ ̃

 ˜ (ν)| ν=0 . From 
Zk Zk Xk |Zk 

For presentation simplicity, in this derivation we will only consider 
weighting on the terminal state, x(p), and on the m scalar control 

[13, 14] the form of the CF of the ucpdf at time k is shown to be 

nk|k 
inputs. The control weighting functions MU    np−1

 ζi /π can t ¯ �   k|k 
yk|k 

(ν) 

i=k  u2 (i)+ζ2 

come out of the integral in (12). Then, the product over i inside the 
integrand has only the term for i = p − 1. For notational convenience 
we can drop the time-step index in this integral and write it over 
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{x̃ 1, . . . , x̃ n} as 
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qk|k sgn 
(/ \\ 

ai£   , ν ∈ R , (17b) 
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k|k k|k k|k k|k k|k k|k 
= MU

 Rx(x̃  + x̄) · fX̃ ˜ (x̃| ̃ k )dx̃ 1 . . . dx̃n. (13) and the parameters nt    , ne,i , qi£   , pi£  , ai£  , bi are generated 
p |Zk 

Z 
−∞ 

 
 

The cpdf fX̃p | ̃  (x̃| ̃ k ) can be evaluated in closed form for scalar 

sequentially from k = 1. 
For the MPC algorithm, the CF of the ucpdf is to be propagated 

through the stochastic dynamics (7)  to  time  k + m  =  p using 
the propagation formula given in [13, 17]. The CF of the m-step 

Zk 
Z 

systems  [10].  However,  for  vector  state  systems  only  the  CF  of propagated cpdf is denoted φ̄ (ν) and given by 
the cpdf in (13), φp|k (ν), can be evaluated in closed form [13]. 
Therefore, when computing the conditional performance index we 

¯ 
p|k (ν) = 

need to express the integral using the spectral variable ν instead of φ̄ ̃
   ˜ 

mT 
W 

| 
m−1    T T 

W W 

the pdf variable x̃ . The CF is the inverse Fourier transform of a Xk Zk 
(Φ 

k|k 
t ν)φ ((Φ Γ) 

 
k|k 

ν) · · · φ ((ΦΓ) ν)φ (Γν) 

pdf, and therefore CFs retain all the properties of Fourier transforms. = 
�  

gk|k mT yei  (Φ
mT ν) 

Hence, we use the same transform on the objective function Rx  in 
 
 

i=1 
i (ygi(Φ ν))e 

(13), and then apply Parseval’s identity. The inverse Fourier transform 
( 

Φm−1Γ,                 ν
 \

 
of Rx  in (13) is denoted Lx  and given by × exp — β     − · · · − β |(ΦΓ, ν)| − β |(Γ, ν)| . 

(18) 
 
 

Lx(ν) = 

+∞ 
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Rx(x̃  + x̄)ejν
 

−∞ 

 
 n 

x̃ dx̃  = 
n 

e−ηp,r |νr | − jx̄ r . (14) 
r=1 

In (18) we effectively add m terms to the sum in yk|k (ν) of (17c). 
By combining the exponent in (16) with that in (18), the combined 
exponent in the integrand of (16) has in total nk|k +m+n real terms, 
while the imaginary part is composed of two components. Define the 

Using these definitions, we can apply Parseval’s identity over each 
variable in (13) to express the conditional performance index as an 

following terms 
p̄i£ = pi£, 

 
āk|k = Φmak|k 
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integral over the spectral variable ν, i£ i£ ei 
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V. THE CONDITIONAL PERFORMANCE INDEX FOR A SECOND 
ORDER  SYSTEM 

Now, let us limit our discussion to a second order system, i.e., 
n = 2, in order to use the structure for the cpdf’s CF presented 
in [16]. This alternate, two state structure for the CF of the cpdf 

ȳk|k �  k|k 
/ k|k   

\  /
¯k|k   

\ takes advantage of relationships not yet generalized to the general 
ei  (ν) =  

 
£=1 

p̄i£ āi£  , ν   + j bi£   , ν . (20c) 
vector-state case that drastically reduces the number of terms needed 

The integration in (16) is performed for each element of ν in turn. T  where ν̂  ∈ Rn−1. 
to express the CF. In particular, there is a simpler structure for the 
exponential argument in (17c), as well as a simpler, closed form 

Beginning with νn, decompose ν = 
I
ν̂ 

Then, 
νn

l
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representation for the gk|k  coefficient functions in (17a). 
The structure for the CF for the ucpdf is given by 
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 
i=1 

ψi(νn, ν̂)dνn dν̂. (21) i=1 £=1 £=1  
(25) 

−∞  −∞ −∞ 

The objective is to reduce the inner integral in (21) to a form that 
is obtained in closed form using the integral formula developed in 
[13, 14]. First, since āk|k  multiplies ν in the sign function in (20b) 
and the absolute value function in (20c), they are decomposed as T 

which consists of a sum of Nk|k similar terms. By using the 
efficient algorithm presented in [17] instead of the general vector-state 
algorithm from [13], the number of terms needed to express the cdpf’s 
CF is dramatically reduced (see [17] for an explicit comparison), 

āk|k 
 
âk|k k|k 

 
 , where ãk|k

 k|k n−1 which also significantly improves the efficiency of the controller. 
i£    = i£ ãi£ i£     is a scalar and âi£     ∈ R . 

Therefore, the inner products in (20b) and (20c) become Each of these terms is a product of a coefficient function Gi (ν) 

/
āk|k    

\ 
= 

/
âk|k , ν̂

\ 
− 

( 
−ãi£  νn 

\ 
. (22) 

and  an  exponential  function  whose  argument  involves  a  sum  of 
absolute values equivalent to (17c). In the exponential argument: 
there is a sum of Li absolute value terms; the P £  and Z£  values 

In order to rewrite (22) in a form consistent with the integral k|k i i 
k|k represent real, scalar constants where P £ > 0; the BMi s are 1 × 2 

formula in [13, 14], −ãi£     is factored out of the second term. If i k|k 

i£    = 0, then the term e 
I
âk|k ,ν̂

\
 loses dependence on νn  and it is row vectors, called the fundamental directions; and the M £ represent 

removed from the inner integral in (21). Therefore, only ãk|k  /= 

0 
needs to be considered. Let (22) be rewritten as 

integers that index the fundamental directions that multiply ν. The 
parameters for the two-state estimator are constructed recursively in 
the measurement update process, as described in [16]. All of these 

/
āk|k   

\    
k|k 

  ( 
k|k 

\ ( k|k 
\ parameters correspond with those of the structure for the cpdf’s CF 

i£  , ν = ãi£ 

  sgn   −ãi£ µi£    − νn , (23a) presented in Section IV. The P £  and Z£  parameters correspond to I 
âk|k 

\ k|k 
i i 

k|k M   

where µk|k  = 
(20c) are 

    i   k k 
−ãi  

, ν̂ . Therefore, the elements in (20b) and pi£    and bi    , respectively, and the fundamental directions B 
the same as the ak|k  vectors. 

i 
k|k are 

qk|k (/ 
k|k    

\\ k|k 
( 

k|k 

\ 
, (23b) The coefficient functions Gi (ν) equal the gk|k  from (17a), and 

i£  sgn āi£  , ν = q̄i£   sgn µi£    − νn are rational functions of polynomials of sums of sign functions, given 
p̄k|k  

/ 
k|k    

\  k|k 
  k|k by 

i£ āi£ , ν̂   = ρi£  µi£ − νn  , (23c) 
i 1 f

a
 + b sgn 

(
BMi ν

\
 sgn 

(
 

Mi ν
\ 

where q̄k|k = qk|k sgn 
(
−ãk|k 

\ 
and ρk|k = pk|k  ãk|k . Using these Gk|k (ν) = (2π)n i i k|k Bk|k 

i£ i£ i£ i£ i£      i£ 
definitions, the inner integral of (21) is restated as 


nk|k 

 
+jcisgn 

(
B 

i 

1  \ 
k|k ν + jdisgn 

( 
Mi

 

Bk|k ν
\  

r∞ I 
k k ψi(ν)dνn = ej bi   ,ν̂

 
\ r∞ ei 

gk|k �  k|k 
( 

k|k 

n

\ Lk|k −2 n   1   
i   q̄i£  sgn µi£    − ν  × jθi i 

−∞ −∞ 


n̄k|k 

£=1 

 
r=1 k−r + γ + Sk−r (Bk|k ν) 

1 
1 

,   (26a) i − i i 
× exp  �  

ρk|k  µk|k k|k  jθk−r − γ + Sk−r (Bk|k ν) 
 i£ 

£=1 
i£    − νn  + jb̃i νn dνn.    (24)  

where 
 

The convolution integral in (24) is shown in [13, 14] to have a closed 
form solution composed as a sum with n̄k|k  terms, each of which 

 
 
 i Sk− 

 
r (Bk|k ν) = 

Li k−r|k−r 
�  P £ 

(
BMi 

HT
\ 

 
 
sgn 

( 
M   

\ 
B ν   , 

 
 
(26b) 

is structurally similar to the terms in ψi(ν). That is, there will be a 
new g function which is a function of signs of inner products of ν̂ . 

£=1 

θi 

k−r|k−r 

1 1 i T 

k|k 

2 2 i T 

k−r = z(k − r) − Zi Bk−r|k−r H — Zi Bk−r|k−r H  . 
Therefore, this integration process can be repeated until all of the 

integrals are taken, and a closed form solution of the conditional 
performance index is determined. For a vector state system of general 

(26c) 
The arguments yk|k (ν) of gk|k , given in (17b), correspond to the 

gi i 
order n, a closed form analytical solution is not attainable due to the 

i Sk−r|k−r (Bk|k ν) defined above. 
complexity of the coefficient functions gk|k . However, a closed form The state propagation uses the same formula as in (18) and [13, 
expression for the conditional performance index can be obtained for 17]. This process affects the exponential argument of φ̄ by adding 
a two-state system, presented next, by using the structure from [17]. new terms to the real part and a transformation on the fundamental 
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directions  B M   i . The coefficient functions remain unchanged as 
k|k Denote the ith inner integral with respect to ν2 in (31) as Ii,2: 

polynomials of sign functions, but the arguments of the sign functions 
have the same transformation as in the exponential argument, so that r∞ 

   
Lp k 

i i mT i �   £     M M   

Gp|k (ν) = Gk|k (Φ ν). The state propagation does not add any Ii,2 = Gp|k (ν1, ν2) × exp − i i   1   
new terms to the sum, so that Np|k  = Nk|k . Hence, the m-step state 
propagated cpdf’s CF is given by 

−∞ 
 
 
 η2  0 + ν2 

 
( 

2
 

+ j  
�  

Z£
 

£=1 

  
\ 

i 

 
ν2 + jx̄ 2ν2

 dν2.   (32) 
¯ 

p|k (ν) = 
− | |  

£=1 

i Bk,2  

Np|k 
�  i 

   
Lp|k 
�  

 
 

  £ i 

 
2 
�  ( £   The integral I 

 
 
i,2 is over the ν2 variable, but it also contains ν1  in 

Gp|k (ν) exp − Pi   Bp|k ν + j Zi B p|k ν . the absolute value terms in the argument of the exponential and in 
i=1 £=1 £=1  (27) the coefficient function Gi . In order to solve it, we need to use 

 
 

Using this expression for the unnormalized CF, we can derive an 
expression for the performance index in closed form. The transformed 

the integral of absolute values method presented in [13, 14, 16]. This 
method involves defining a set of scalar constants ρ£ and ξi , as well 
as scalar variables µ£ that depend on ν1, and thus are constants in 
this integration. 

M   
objective function in the performance index (14) is given by If Bk, 

i = 0, then when this constant multiplies ν2  the variable 

L∗
x(p)(ν) = e−ηp,1 |ν1| + jx̄ 1ν1 − ηp,2 |ν2| + jx̄ 2ν2 (28) 

 
where, since k will be a constant through this process, the time 
subscript of x̄(p) is replaced with element subscripts as x̄(p) = 

disappears, and that term comes out of the integral. This will affect 
the specific form of second integral over ν1, but the method presented 
here can still be used. However, for simplicity of presentation, in this 
derivation we assume that all the  M  = 0. Then, we can construct 
a   µ    p|k +1 

set that transforms I   into the integral of absolute 
[x̄1 x̄ 2]T. The 2-state specific version of (15) then becomes values structure. This assumption does not affect generality, because 

M   

if one of the Bk, 
i equals zero for some i, then that absolute value 

r∞ 
J ̃   = M L∗

 
 

 
 

1    2 p k   1    2 1  2 

term would not be a function of ν2 and would come out of Ii,2 and 
integrated later. 

Zk (2π)2 x(p)(ν , ν ) · φ |  (ν , ν ) dν ν The set of variables, denoted {µ£} , is constructed as 
−∞ 

U r∞ 
 
 
 

      i i i 

 
M  

−Bk,1 ν1 

= M (2π)2f ̃  Zk 
−∞ 

exp (−η1 |ν1| − η2 |ν2| + jx̄ 1ν1 + jx̄ 2ν2) 
 

i 

Bk,1 ν1 + Bk,2 ν2 = −Bk,2 
 

 
  

i 

 
   
i Bk,2 

− ν2
 

Np|k 
�  i 

   
Lp|k 
�  £      M     i 

 
2 
�  ( £   

= −Bk,2  (µ£ − ν2) (33a) 

× Gp|k (ν) exp − Pi   Bp|k ν + j Zi B p|k ν dν. where  
M  

 −B ν1 i=1 £=1 £=1 
   k,1   R ∈ {1, . . . , Li    } 

 
(29) 

µ£ = 


 
 

 
M  i Bk,2 
0 R = Li 

| 

 
 
+ 1. 

(33b) 

The integral with respect to ν2  is now taken. We use a second Similarly, for the argument of the exponential, we can construct a set 
i subscript to denote the individual elements of the M £  row of B of   ρ Lp|k +1 

i p|k { £}1 as as B i = BMi   
B . This allows us to decompose the complex 

M   

p|k 
  

k,1 
  

k,2 

 
P £ 

  
Mi i 

part of the exponential argument as ρ£ =  −B k,2 

 
 R ∈ { 

1, . . . , L 
p|k } (33c) 

 
 

2 
  £ i 

i  p|k 

( 
2 

\ �   £   Mi 

i Bk,1 1 

( 
2

 

+ j i B 
\ 

Mi 
k,2 ν2, 

η2 R = Li
 

and a scalar number ξk  as 
2 

£=1 £=1 £=1 i �   £   M   

 
and rewrite J ̃   as 

Zk 

(30) ξk = x̄ 2 +  
 
£=1 

Zi Bk, 
i . (33d) 

The  solution  to  an  integral  of  an  exponent  of  absolute  values 
requires dividing the domain of integration into regions in which the 

  1 
(p−1     

ζ /π 
 

\
 

integrand is continuous. Since i (ν) is piecewise-constant, its dis- 
J ̃   = 
Zk (2π)2f ̃  

Zk 

n 
 

i=k 

i 

u2(i) + ζ2
 

Gp|k 

continuities lie on the boundaries of these regions, and hence Gi i 
(ν) 

Np|k    ∞ �  ×  
exp 

( 
−η1 |ν1| + jx̄ 1ν1 + j 

2 

�  (
Z£

 
M 

\ \ 
1 

is treated as a constant in each integral. In order for the Gp|k (ν) 
coefficients to be consistent with the form in (37), a procedure mir- 

 
i=1 

−∞ 

 
£=1 

 
i
 

i Bk,1 roring that of the measurement update process from [16, 17] must be 
used. This involves rewriting the first bracket term in (26a) as a sum Lp|k 

i    �   £ i of sign functions, using the identity sgn 
(
 

Mi ν
\ 
sgn 

(
 

k|k 
Mi ν

\ 
= 

k|k 
× Gp|k (ν) exp −  

 
£=1 

Pi   B p|k ν − η2 |ν2| 1 
(
sgn ( M 1   \ 

B i ν + sgn 
( 

M 1
 

B i ν 
\\2 — 1 and the substitutions 

−∞ 2 
 k|k k|k 

2 ρ̄1 = cisgn 
(
−B 

Mi 
\ 

,
 ρ̄2 = disgn 

(
B 

Mi 
\ 

,
 ρ̄£ = 0 for R > 2, 

+ j 
�  (

Z£BMi 
\ 
ν + jx̄  ν  dν dν .    (31) k,2 k,2 

 £=1 i  k,2 2 2  2 2     1 



ρ̃1 = 1, ρ̃2 = 1, ρ̃£ = 0 for R > 2. 
(34) 
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sgn 

( 
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i 
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
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i 
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(
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Li 
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 k 

i  
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 
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Li

 
 
 

 

Li ( 

\ 

∞ 

i 

 

  
Li

 

 − 
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Furthermore, for the rest of the bracket terms in (26a) we can rewrite 

(r) 
where 

the sums given by Sk−r  in (26b) by defining constants ρ̌£  as 
 


P £ 

(   

 
   −B  i R = 1, . . . , Li − r 

 
p|k +1 


 

i �  (r)ρ̌£ = 


 Bk−r|k−r k,2 Gp|k 
±ρ̌  + ρ̌ sgn (µ  − µ ) = 

i 

0 R = Li 
| 

p|k 

− r + 1, . . . , Li 

 
+ 1 
(35) 

 m 
£=1 

£/=m 
 

£ £ m   
 
 

Li   +1 

in order to write Gi in (32) as  (   
ai + bi 

 2 
± ρ̃m 

p|k 

+
�  

ρ̃£sgn (µ£ 
£=1 

£/=m 

\ 

− µm) 
\ 

− 1 

Gp|k (ν − H σ) = p|k +1 


  
Li i + j ±ρ̄m +

�  
ρ̄£sgn (µ£ − µm) 

p|k +1 

i   �   ρ̃ sgn (µ − σ) , 
Lp|k +1 
�   ρ̄ sgn (µ − σ) , . . . 

  
£=1 

 
£/=m Gp|k  £ £ 

£=1 

£ £ 
£=1 k|k −2 1 1 

Li i  n     
p|k +1 

. . . , 
�

 
 
(Li 2) 

p|k ρ̌£sgn (µ£ − 
Lp|k +1 

σ) , . . . , 
�

 
 
(1) ρ̌£sgn (µ£ − σ) 

× 
2π 

p=1 
i k−r + γ + Si (±(r)ρ̂m , µ£ − µm) 

£=1 

 
£=1 — 

jθi — γ + Si 1 
1 

(±(r)ρ̂m, µ£ − µm) ,   (38b) 
p|k +1 


 k−r k−r 

:= Gi
 

  �   
ρ̌ sgn (µ − σ) .    (36) 

p|k  £ £  
£=1 

and for r ∈ {1, . . . , Li − 2}, 

 
Here, the variable ρ̌£  is a shorthand variable representing all of the 
(r)ρ̌£, ρ̃£, and ρ̄£  constants in all of the sums in G i    . Sk−r (± (r)ρ̂m, µ£  − µm) 

Then, to write this integral in a form consistent with the mea- m 
=  P m i HT

 

k−r|k−r 
surement update formula, let σ := ν2   in order to write the one- 
dimensional integral as 

i 
Li 

k−r|k−r 

+ 
�  

P £ 
(
BMi HT

\ 
sgn 

(
 Mi 

\ 
sgn (µ µ  ) 

 

 
  

i 
 

 
£=1 

£/=m 

i k−r|k−r −Bk,2 £ −  m 

r 
Ii,2 = Gi

 
Lp|k +1 

 �   
ρ̌£sgn (µ − σ) 

m 
( 

= ± i 
m 
i Bk−r|k−r 

HT
\ 

p|k  £  
£=1 

Li  
r k  r   

M  
 

M m  k− |  − −∞ �   £ 
( 

M 
T
\ 

i 
M Bk,1 

i Bk,1 
 

× exp − 
p|k +1 �   

ρ |µ 
 

− σ| + jξi σ dσ.   (37) 
+ Pi 

£=1 
£/=m 

Bk−r|k−r H sgn −Bk,2  · −  
   
i Bk,2 

+ m  
Bk,2 

 £ £ k    
£=1 × sgn (ν1) .    (38c) 

 
 

The solution is given as a sum of Li 
| + 1 terms as  

In the two-state estimator [17], algebraic relationships are used to 
reduce the complicated bracket terms produced by the update process 
into  simpler,  polynomial  forms.  Similarly,  those  same  algebraic 

p|k +1 

  
Li   +1 

p|k 

 
relationships are used here to simplify (38a). Denote the coefficient 

Ii,2(ν1) = 
�   

exp  �
  ρ£ |µ£ — µm | + jξi µm


 of the mth

 term in the sum as G i,m 
p|k and consider the numerators of 

m=1 £=1 

£/=m 
the coefficient function in the brackets in (38a) given by (38b). This 
complicated term can be reduced to a simple function of sgn (ν1) 

p|k +1   i 
 

by  rewriting  it  in  the  form  of  the  left  hand  side  of  (48a),  and  Gp|k   
 

+ρ̌m + 
), 
£=1 

£/=
m 

ρ̌£  sgn (µ£  − µm) then applying the algebraic identity presented in the Appendix. This 
process begins by rewriting the numerator functions (38b) in a four 

× 
Li   +1  p|k parameter form involving only sgn (ν1) as    jξi + ρm +  

 
), 
£=1 

£/=
m 

ρ£ sgn (µ£ − µm) 

 
Li 

  m m m m 

Gp|k −ρ̌m  + 
p|k +1 
), 
£=1 

ρ̌£ sgn (µ£ − µm)  
 

ai   ± bi   · sgn (ν1) ± jci   + jdi   · sgn (ν1) . (39) 

  £/=m 
 

— 
Li .   (38a) 

jξi  − ρm + 
p|k +1

 
), 
£=1 

£/=m 

ρ£ sgn (µ£ µm)   


  
 

Then, the real part of the exponential argument in (38a) and the 
sums in the denominators of the coefficient function in (38b) can 
be reduced to a single constant times |ν1| or sgn (ν1), respectively, 
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where those constants are defined as 

p|k +1 

(38b) by substituting in (38c). This product is given in Result 2 from 
the Appendix of [17] and produces a term of the same form as (43). 

Di,m |ν1| = 
�  

 
£=1 

£/=
m 


Li

 

ρ£ |µ£ − µm| 

    

Hence, this result can be combined with the next bracket term in the 
product in (38c), eventually expressing both numerators as (39).  

For m > 2, this first bracket term produces a simpler form due 

p|k +1   M m    to two sign functions canceling each other out. Recalling that ρ̄£ = 
=  �    −Bk,1 −Bk,1      ρ̃£ = 0 for R > 2, the new term obtained for m = 3 corresponds to 

 ρ£   M     − M m     |ν1| , (40a) 
£=1 

   
Bk, 

i
 i Bk,2 the coefficient 

£/=m 2
 

Li ( Li   +1 

Ď i,msgn (ν1) = 

p|k +1 
�  

 
£=1 

£/=m 

ρ£sgn (µ£ − µm) 
 

ai + bi 
1 ( p|k 

2  ± ρ̃m + 
£=1 

£/=m 

\ 

ρ̃£sgn (µ1 − µ3) 
\ 

− 1 

p|k +1   
M m 

 
 

p|k +1 


 
=  �  −Bk,1 −Bk,1  + j  �   

 
£=1 

£/=m 

ρ£sgn   
   
i Bk,2 

 
m 
i Bk,2 

 sgn (ν1) . ±ρ̄1 + 
£=2 

ρ̄£sgn (µ2 − µ3) 

(40b) = ai+bisgn 
(
B 

Mi 

k,2  · B Mi 
\ 

k,2 sgn (µ1 − µ3) sgn (µ2 − µ3) 
Expressing the numerators of (38b) as (39), and using Ď i,m, then the 

( 
M 1 \ 

sgn (µ µ ) + jd sgn 
(
 M 2 \ 

sgn (µ µ ) 
result in the Appendix can be used to express the coefficient function 
as a two parameter form given in (48a), where those parameters are 

+ jcisgn 
 

i Bk,2 

 
1 −  3 

1 3 
i i 

i 
i Bk,2 

2 
i 

2 −  3 

Mi 
 

denoted ai,m and di,m. For the exponential argument, use Di,m and = ai + bisgn − 
B
 k,1 

M 1 

Bk,1 

+  M 3 
 sgn − 

B
 k,1 

M 2 

Bk,1 

+  M 3 
 

rewrite the complex part as i Bk,2 
i Bk,2 

i Bk,2 
i Bk,2  

k ν1 = ξk · 
−B

 M  
  · ν1 (41) 

 
+ j cisgn 

1 
i Bk,1 − 1 

M 3 
 Bk,1  + disgn 

2 
i Bk,1 − M 3 

 
+ 

Bk,1 

ξ̂i 
i k,1 

   
i Bk,2 

  
Mi

 

Bk,2 
3 
 

i Bk,2 

 
2

 

i Bk,2 

3 
 

i Bk,2 

in order to express (38a) in a much simpler form given by 

p|k +1 
î 

× sgn (ν1) .    (44) 

Now, substitute (42) into (31) and denote the outer integral with 
Ii,2(ν1) = 

�  
 

m=1 

{ai,m + j di,msgn (ν1)} · e−Di,m |ν1| + j ξk ν1 . respect to ν1  by 

(42) 
To obtain the form in (39) for (38b), a procedure mirroring that 

of the estimator update process is applied, which uses the algebraic 

 
Ii,1 = 

Li   +1 p| 
�  

 
m=1 

r∞ 

{ai,m + j di,msgn (ν1)} 

relationships presented in the Appendix of [17]. For m = 1 and 
m = 2, the numerators of (38a) are not equal and hence cannot 

× exp 
−∞ (

−Di,m |ν1| + jξ̂i
 

\ 
exp (−η |ν | + jx̄  ν ) 

come out of the bracket term. Then, the numerators for m = 1 are 
given by 

k ν1 

× exp 

1    1 1  1 

( 
2 

  
\ 

j 
�  

Z£   Mi dν 

( 
1 (

 
 

p|k +1 \2 
\ 

 

 
Li   +1 p|k 

£=1 
i Bk,1  1 

ai + bi 
2  ± ρ̃m + 

£=1 

£/=m 

ρ̃£sgn (µ2 − µ1) − 1 
=  

�  
m=1 

r 
{ai,m + j di,msgn (ν1)} 

−∞  
p|k +1 

 (
 2 

l \ 
î �    £  

 

+ j ±ρ̄ +
�  

ρ̄ sgn (µ − µ ) × exp — Di,m + η1 |ν1| + j ξk + x̄ 1 + Zi Bk,1    ν1 dν1. 
 1 £ 

£=2 

2 1  £=1  
(45) 

= ai±bisgn 
(
B i

 
Mi 

\ 
sgn (µ − µ ) This integral has a form identical to the measurement update process 
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The same manipulations can be done for the numerators for m = 2 
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Hence, since the first bracket term in (38b) can be expressed as 
(43), it can be combined with a bracket term from the product in 
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Finally, using (46) in (31) and reintroducing the time dependence 
notation, the conditional performance index is given by 

The example in Fig. 1(a) shows that the Cauchy controller is nearly 
linear for small measurements and reduces its control effort to zero 
as the measurement deviations become large. This is in contrast to 

1 
(p−1 ζ /π \ Np|k p|k +1 the LEG controller, which is linear and thus responds strongly to 

J ̃   = 
Zk 

 
2π2f ̃  

Zk 

n 
 

i=k 

i 

u2(i) + ζ2
 

  

�  
 

i=1 

�  
 

m=1 

2 

 
M 
l  

large measurement deviations. This behavior in the Cauchy controller 
occurs when the measurement uncertainty is larger than the state 

ai,m  Di,m + ηp,1

 
di,m  

 
x̄ 1(p) + 

), 
Z£

 
£=1 

i 
k,1   .   (47) 

uncertainty. In the opposite case shown in Fig. 1(b), the measurement 
has less uncertainty than the state. Here, the Cauchy controller’s 
response closely matches that of the LEG in a neighborhood of the 

    
k + x̄ 1(p) + 

2 ), 
£=1 

  
l2 

£ i 

i Bk,1 

Di,m 
2  

 
+ ηp,1 


 

origin, and in fact responds even more strongly than the LEG for 
large measurement deviations. 

This   closed   form   conditional   performance   index   was   ob- 
served  to  be  non-convex  and  depends  on  the  control  input  se- 
quence  {u(k), . . . , u(p − 1)} in  a  complex  way.  Specifically, 

The three different curves in both of these figures depict the control 
signals for three different control weights: no control weight, ζ = 10, 
and ζ  = 5. As expected, heavier control weights (i.e. smaller ζ) I

x̄ 1(p) x̄ 2(p)
l
 = x̄(p) depends on the control sequence, along reduce the control effort. Even without any control weighting, the 

with the parameters ai,m and di,m that also depend on the measure- 
ment sequence  ˜ . Therefore, we maximize (47) numerically. The 
optimization is done in two steps: first, the global optimum of the 
conditional performance index, expressed as a double sum in (47), 
is optimized with respect to the control input with a coarse gradient 
search in order to find an approximate optimal control sequence. 
Then, we use the accelerated gradient search method [21] starting 
from that approximate sequence in order to refine the optimal control 
solution. 

response in Fig. 1(a) goes to zero for large measurement deviations. 
The fact that this behavior is seen when there is no control weighting 
implies that the attenuation of the control signal for large measure- 
ment deviations is due to the cpdf and not the objective function. 
Moreover, this behavior is not shared by the LEG controller that 
uses a similar objective function but assumes light-tailed, Gaussian 
distributions. 

 

 
2 

VI. NUMERICAL EXAMPLES 1 
Here, we present two sets of examples, the first of which shows 

the optimal control versus the measurement for the first time step 0 
only, and the second set shows two multi-step examples. All of these 
examples use a two-step horizon, i.e. m = 2, so that there exists −1 
a control sequence that can drive our two-state system to the origin −2 

no ζ 
     ζ = 10 

ζ =5  

over this horizon length. However, as we are using model predictive 
control, only the first control input of this sequence is applied at that 
time step. Gaussian parameters used for the LEG and for Gaussian 
noises are closest in the SαS sense to their corresponding Cauchy 

−15 −10 −5 0 5 10 15 
z(0) 

(a) β = 0.1, γ = 0.5. 

distributions. For clarity of presentation in the figures, the first update 4 
occurs at k = 0 instead of k = 1. Furthermore, since the control 
weightings remain constant across time steps, we will drop the time 2 
notation from the parameters η and ζ. 0 

All the simulations use the same system dynamics with H = [1 1], 
ΓT = [0.5 1], ΛT = [0.5 1], m = 2, and the eigenvalues of Φ are −2 
0.8 ± 0.55j. The terminal state weightings are η = [1 1], and when 
control weightings are used they are ζ = 10. The initial condition’s −4 

no ζ 
ζ = 10 
ζ =5  

scaling parameters are given by α = [0.8 0.8], and the process and 
measurement noise parameters β and γ are either 0.5 or 0.1. 

All of our examples compare our Cauchy optimal model predictive 
controller with a similar LEG model predictive optimal controller [1]. 
The LEG estimator assumes that the stochastic inputs are described 
by the Gaussian pdfs that are closest, in a least squared sense, to the 
given Cauchy pdfs. The LEG controller assumes that its objective 
functions of the state and control resemble scaled Gaussian pdfs that 
are closest, in the least-squared sense, to the scaled Cauchy pdfs 
in (10). The LEG design details can be found in [12–14, 16, 17], 
where similar comparisons and least square fits were used. The LEG 
controllers’ responses are shown in dashed lines in the figures. 

 
A. One-Step Control Examples 

The first set of examples are shown in Fig. 1. These figures show 
the applied optimal control input at the first time step given the first 
measurement. In the two cases presented, all the systems parameters 
are the same, except in Fig. 1(a) γ > β (i.e., more measurement 
than state uncertainty), and in Fig. 1(b) β > γ (i.e., more state than 
measurement uncertainty). 

−15 −10 −5 0 5 10 15 
z(0) 

(b) β = 0.5, γ = 0.1. 
 

Fig. 1.  Optimal control vs the measurement for the first time step. 
 
 
 
 

B. Multi-Step Control Examples 

The complexity of evaluating the conditional performance index 
grows as the number of terms increases across time steps, as indicated 
in (47). For implementable control, this growth needs to be arrested. 
The full information CF of the ucpdf (25) is approximated by a CF of 
a ucpdf conditioned on a fixed sliding window of the most recent mea- 
surements, as described in [17], where the number of measurements 
in this horizon is denoted NZ . Hence, the first NZ measurement 
updates are performed normally, and the control optimization is 
performed using this CF. Then, for time steps k > NZ , we initialize 
a new finite horizon (FH) estimator and perform NZ measurement 
updates over the fixed window {z(k − NZ  + 1), . . . , z(k)}. The 
conditional performance index (15) is evaluated using this FH CF. 



i 

i · 

m 

9 
 

 
The remaining examples in Figs 2, 3, 5, 4, and 6 are all multistep 

examples over 100  measurements,  and  all  use  a  horizon  length 
of NZ = 8. The variations between the simulations are in the 
stochastic parameters, alternating which of process or measurement 
noise dominates the other and whether the noises are Gaussian or 
Cauchy. 

In Fig. 2, there is more uncertainty in the state process noise 
than in the measurement noise. When large measurement deviations 
occur (such as at k = 52), the Cauchy controller’s effort is very 
small even though there is no weighting on the control inputs. In 
contrast, the  LEG controller  responds with  a large  control effort 
that drives the states from their regulated state of zero. However, 
when large process noise inputs occur, the state deviates and the 
Cauchy controller applies a larger control effort than the LEG, thus 
regulating the  state more  effectively. It  is  interesting to  compare 
Fig. 2 with Fig. 3 in light of Fig. 1. They suggest that when the 
measurement noise density parameter dominates the process noise 
density parameter in constructing the Cauchy controller, the effect 
of measurement outliers is mitigated, while still responding to state 
deviations due to process noise. 

On the  other  hand,  in  Fig.  3 there  is more  uncertainty  in  the 

VII. CONCLUSIONS 

An optimal stochastic controller was derived for vector-state, linear, 
discrete-time systems with additive process and measurement Cauchy 
distributed noises. Since the Cauchy distribution has an undefined 
mean and an infinite second moment, we cannot use standard 
objective functions, e.g., the expected value of a quadratic function 
of state and control variables. Therefore, a new and computable 
objective function was defined. As opposed to previous work, the 
CF of the cpdf of the state given the measurement history and the 
Parseval’s identity are used to express the conditional performance 
index in a closed form. This closed-form conditional performance 
index is optimized numerically using an accelerated gradient search. 
Examples are presented that show how the proposed vector state 
Cauchy controller compares against an equivalent LEG controller, 
demonstrating the Cauchy controller’s performance and improved 
robustness over its Gaussian counterpart. 

 
APPENDIX 

The term given by ( 
am + bm · sgn (ν1) + jcm + jdm · sgn (ν1) 
i i i i 

state than in the measurement, and the Cauchy controller behaves jθ + ρm + Ď · sgn (ν1) very much like the linear LEG controller. The state trajectories and am m m m  1 

control inputs of the Cauchy and LEG controllers appear equal, but 
actually their differences are much smaller than the scale of the axis 
and cannot be seen. Similar behavior was observed in Fig. 1(b), 
suggesting that when the stochastic parameters allow it, the Cauchy 
controller follows the measurement more. It responds in a more linear 
fashion to the measurements, similar to the performance of the LEG 

   i    − bi    · sgn (ν1) − jci    + jdi    · sgn (ν1) 
— 

jθ − ρm + Ď · sgn (ν1) 

= ai,m + jdi,m · sgn (ν1)   (48a) 

where the parameters ai,m  and di,m  are generated from the other 
parameters by the linear relationships 

controller in that setting.  
ρm −Ď −θ 0  

am 
This behavior is seen again when both controllers face Gaussian 

 
ai,m

l
 1   ā b̄ 0 0 

l  θ 0 ρm −Ď  bm  noises, as in Figure 4. Here, the Cauchy controller closely follows 
di,m 

= 
∆  0 0  ā −b · 0 θ −D ρm 

  m  ,
 

both  the  control  and  state  trajectories  of  the  LEG,  which  is  the 
¯   ˇ 

ˇ ·ci     
dm 

true optimal solution. This demonstrates that the Cauchy controller 
is  robust  under  non-impulsive  noise  environments,  as  it  closely 
approximates the true optimal solution given by the LEG. 

 
where 

 
ā = Ď 2 − ρ2

 

−D ρm 0 −θ 
 
− θ2, b̄ = −2θγ, 

i 
(48b) 

Fig. 5 shows two examples using control weighting ζ  = 10, 
where otherwise Fig. 5(a) has the same parameters as Fig. 2, and 
similarly with Figs. 5(b) and 3. Applying control weighting appears 
to slow down the reaction from the Cauchy controller, as seen in the 
response to the initial process noise pulses in Fig. 2. In Fig. 5(a) 
with control weighting, a one step delay is observed in the Cauchy 
controller’s response before applying the regulating control input. 
This behavior appears again in Fig. 5(b), where the Cauchy controller 
is very delayed in applying control, leading to much larger deviations 
of the state than the LEG allowed. This suggests that excessive 
control weighting can adversely affect the regulation performance of 
the Cauchy controller in response to process noise pulses. However, 
in a situation where the measurement noise dominates, the control 
weighting haS a much smaller effect, and improves performance in 
ignoring measurement outliers. 

The final set of results in Fig. 6 show situations where either 
measurement or process noise is Cauchy and the other is Gaussian. 
In Fig. 6(a) the measurement noise is Cauchy and the process noise is 
Gaussian. Hence, there are no large state deviations, and the Cauchy 
controller performs similarly to the example in Fig. 2, effectively 
ignoring the measurement deviations. In Fig. 6(b), the measurement 
noise is Gaussian and the process noise is Cauchy, and the Cauchy 
controller performs similarly to the example in Fig. 3. Here, the large 
deviations occur in the state, but there are no large measurement 
deviations. The Cauchy controller’s performance closely matches that 
of the LEG in this case, except for the early time steps. 

∆ = π · ā2 + ̄b2   . (48c) 

REFERENCES 

[1] J. L. Speyer and W. H. Chung, Stochastic Processes, Estimation, and 
Control.   SIAM, 2008. 

[2]  N. N. Taleb, The Black Swan: The Impact of the Highly Improbable. 
Random House, 2007. 

[3] E. E. Kuruoglu, W. J. Fitzgerald, and P. J. W. Rayner, “Near optimal 
detection of signals in impulsive noise modeled with asymmetric alpha- 
stable distribution,” IEEE Communications Letters, vol. 2, no. 10, pp. 
282–284, Oct. 1998. 

[4] P. Reeves, “A non-gaussian turbulence simulation,” Air Force Flight 
Dynamics Laboratory, Tech. Rep. AFFDL-TR-69-67, 1969. 

[5] P. Zarchan, Tactical and Strategic Missile Guidance, 6th ed. Reston, 
VA: American Institute of Aeronautics and Astronautics, Inc., 2012. 

[6] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gassian Random Pro- 
cesses: Stochastic Models with Infinite Variance.   New York: Chapman 
& Hall, 1994. 

[7] P. Tsakalides and C. L. Nikias, Deviation from Normality in Statistical 
Signal Processing: Parameter Estimation with Alpha-Stable Distribu- 
tions; in A Practical Guide to Heavy Tails: Statistical Techniques and 
Applications.   Birkhauser, 1998. 

[8] G. A. Tsihrintzis, Statistical Modeling and Receiver Design for Multi- 
User Communication Networks; in A Practical Guide to Heavy Tails: 
Statistical Techniques and Applications.   Birkhauser, 1998. 

[9] G. A. Hewer, R. D. Martin, and J. Zeh, “Robust preprocessing for kalman 
filtering of glint noise,” IEEE Transactions on Aerospace and Electronic 
Systems, vol. AES-23, no. 1, pp. 120–128, January 1987. 

[10] M. Idan and J. L. Speyer, “Cauchy estimation for linear scalar systems,” 
IEEE Transactions on Automatic Control, vol. 55, no. 6, pp. 1329–1342, 
2010. 



     
     
     
 
                         
 

x
2 

x
1 

v 
w

 
u
 

x 2
 

x 1
 

10 
 
 

Control for a Scalar Linear System with Additive Cauchy Noise,” in 

[12]  ——, “A Stochastic Controller for a Scalar Linear System with Additive 
Cauchy Noise,” Automatica. 

[13] M. Idan and J. L. Speyer, “Multivariate cauchy estimator with scalar 
measurement and process noises,” Submitted to SIAM, 2013. 

[14] ——, “Multivariate Cauchy Estimator with Scalar Measurement and 
Process Noises,” in Proceedings of the 52nd IEEE Conference on 
Decision and Control, Florence, Italy, December 2013. 

[15] ——, “State estimation for linear scalar dynamic systems with additive 
cauchy noises: Characteristic function approach,” SIAM J. Control 
Optim., vol. 50, no. 4, pp. 1971–1994, 2012. 

[16] J. L. Speyer, M. Idan, and J. Fernández, “The Two-State Estimator for 
Linear System with Additive Measurement and Process Cauchy Noise,” 
in IEEE Conference on Decision and Control, Maui, Hawaii, Dec. 2012. 

[17] J. H. Fernandez, J. L. Speyer, and M. Idan, “Linear Dynamic Systems 
with Additive Cauchy Noises - Part 1: Stochastic Estimation for Two- 
State Systems,” Submitted to IEEE Transactions, 2013. 

[18] J. Fernández, J. L. Speyer, and M. Idan, “A Stochastic Controller for 
Vector Linear Systems with Additive Cauchy Noises,” in Proceedings 
of the 52nd IEEE Conference on Decision and Control, Florence, Italy, 
December 2013. 

[19] M. Morari and  E. Zafiriou, Robust  Process Control.  New Jersey: 
Prentice-Hall, 1989. 

[20] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal 
Control.   New York: Springer-Verlag, 1975, ch. 5 & 6. 

[21] R. Fletcher and M. J. D. Powell, “A Rapidly Convergent Descent Method 
for Minimization,” The Computer Journal, vol. 6, no. 2, pp. 163–168, 
1963. 

10 
 
 
 

0 

−5 

−10 
 
 
 
 

10 
 

 
0 

 

 
−10 

 
 

20 

0 

−20 

0 
−5 
−10 

 
 

20 
0 

−20 
−40 
−60 

 
  Cauchy MPC 

LEG MPC 

0 20 40 60 80 100 
Time Steps (k) 

(a) Full view. 

4 
 

3 
 

2 
 

1 
 

0 
 

−1 
 

−2 
 

−3 
 

−4 

4 
 

3 
 

2 
 

1 
 

0 
 

−1 
 

−2 
 

−3 
 

−4 
0 20 40 60 80 100 

Time Steps (k) 
(b) Zoomed view. 

 
Fig. 2. Cauchy and LEG controllers’ performance when the measurement 
noise dominates the process noise, γ = 0.5 and β = 0.1, and without control 
weighting. 
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Fig. 3. Cauchy and LEG controllers’ performance when the measurement 
noise dominates the process noise, γ = 0.1 and β = 0.5, and without control 
weighting. 
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Fig. 4.   Cauchy and LEG controllers’ performance against Gaussian noises 
closest in the SαS sense to the given Cauchy parameters. 
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(a) Gaussian process noise, Cauchy measurement noise, γ = 0.5 and β = 0.1. 
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Fig. 5.   Cauchy and LEG controllers’ performance with control weighting, 
ζ = [10 10]. 
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Fig. 6.  Cauchy and LEG controllers’ performance against mixed Cauchy and 
Gaussian noises. 
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